Price Discovery in Waiting Lists: A Connection to Stochastic **Gradient Descent**

Itai Ashlagi, Jacob Leshno, Pengyu Qian, Amin Saberi Stanford MS&E, Chicago Booth, Purdue University

Price Discovery in Waiting Lists

Waiting times serve as prices in waiting lists

- Agents choose among items and associated waiting times
- Can be similar to standard competitive equilibria

Waiting list mechanisms are commonly used

e.g., public housing, organ allocation,...

Natural price discovery process

- Planner does not set prices
- Prices determined by endogenous queue lengths
- Prices adjust with each arrival
 - Similar to Tâtonnement price increases with demand (agents join queue), decreases with supply (items arrive)

Example – Queueing for One Item

- Single item, arrives at Poisson rate 1
- Agents arrive at Poisson rate 2
 - Agents observe the queue length, can join the queue or leave
 - Quasilinear utility

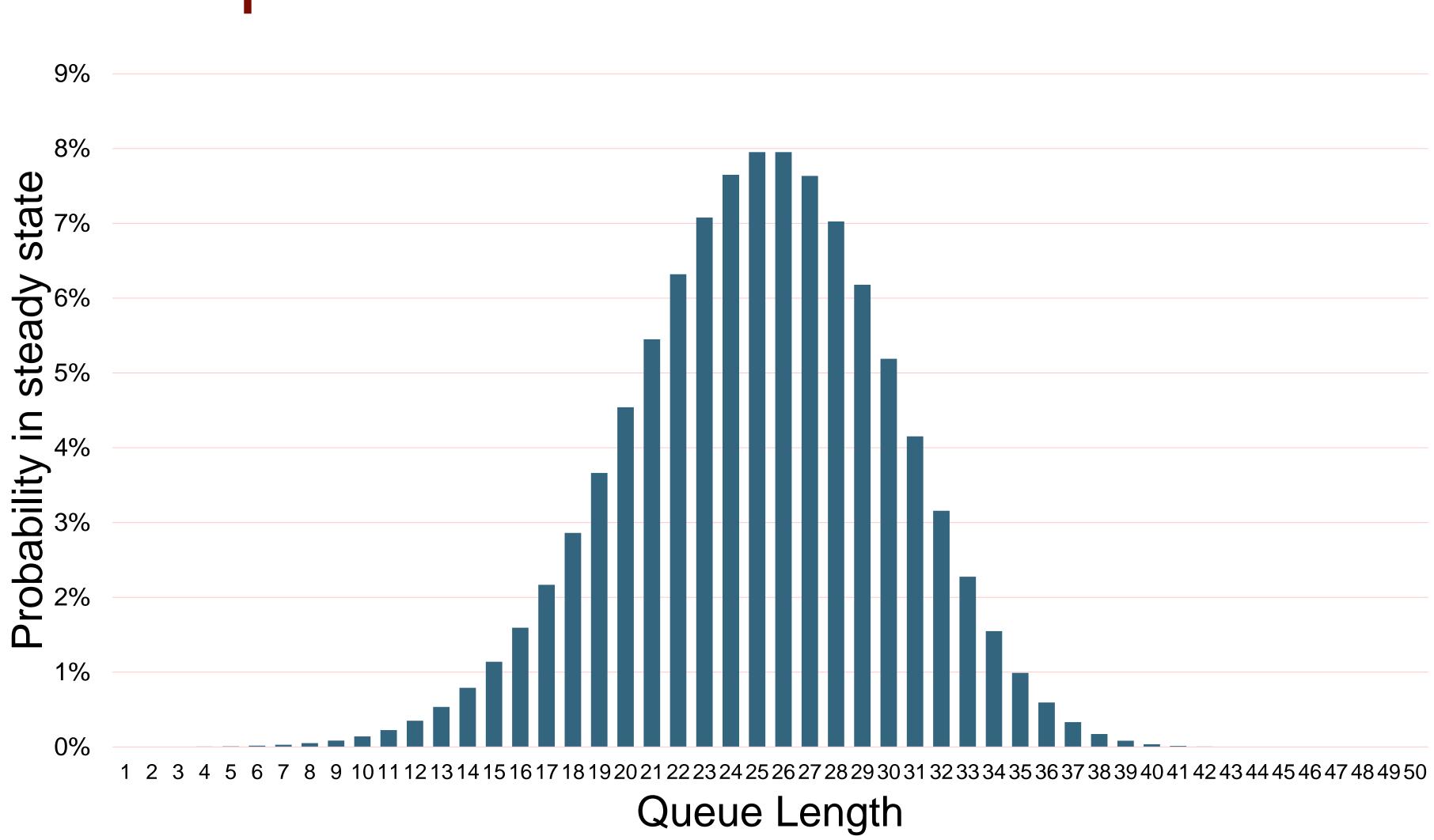
 $v - 0.02 \cdot w$

with $v \sim U[0,1]$ i.i.d.

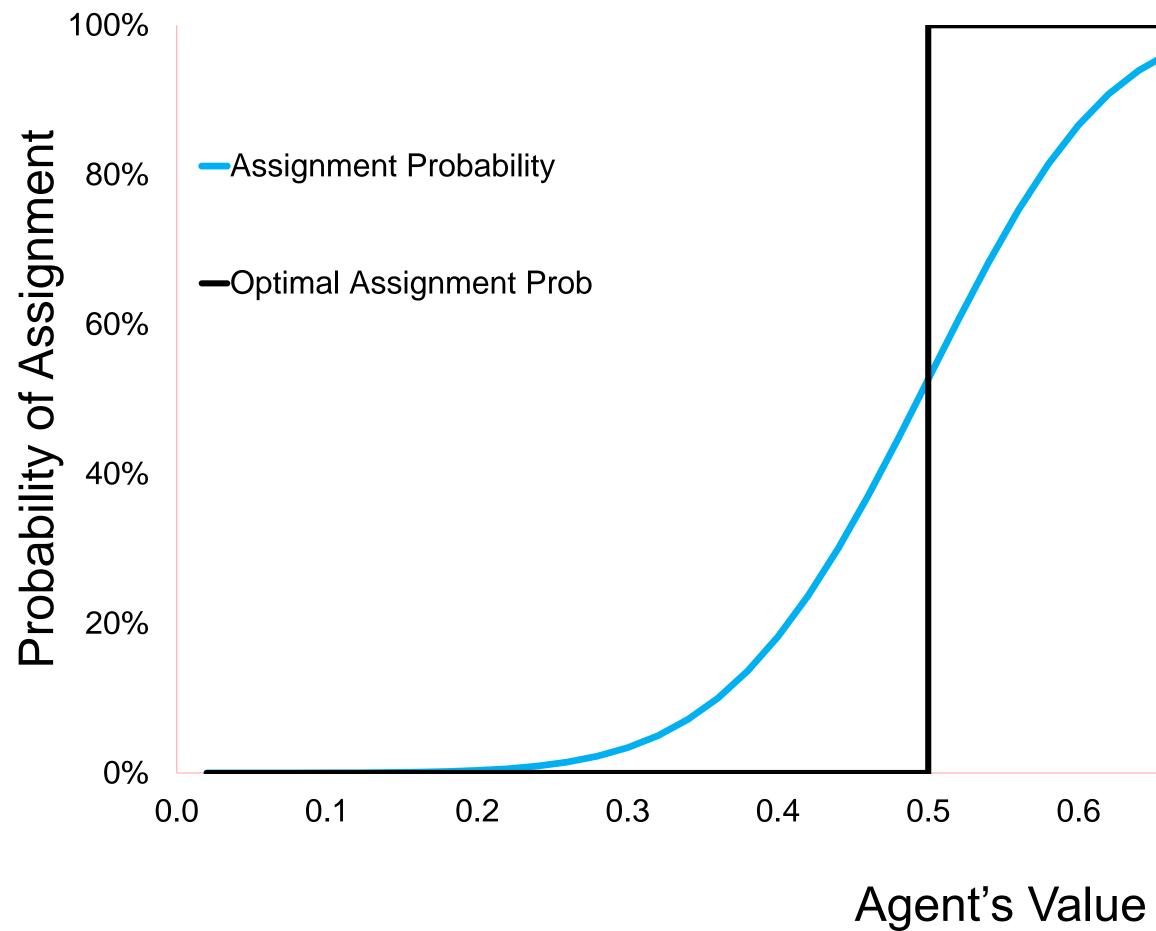
Static benchmark:

- Collect all items and agents that arrive until (large) time T
- Assigning agents if $v \ge 1/2$ maximizes allocative efficiency
- Market clearing price is $p^* = 1/2$

Example – One Item



Example – One Item



0.7 1.0 0.8 0.9

Price Discovery in Waiting Lists **Question:** Allocative efficiency under fluctuating prices

Main Result: Loss from price fluctuations is bounded by the adjustment size

- Bound is (almost) tight
- Conditions for when the loss is negligible

Methodological contribution:

- Price adaptation as a stochastic gradient decent (SGD)
- Duality, Lyapunov functions

Price rigidity: tradeoff between learning speed and overreaction

Related Work

Dynamic matching mechanisms:

Leshno (2017), Baccara Lee and Yariv (2018), Bloch and Cantala (2017), Su and Zenios (2004), Arnosti and Shi (2017), Loertscher Muir Taylor (2020).

Convergence of tâtonnement processes using gradient descent:

- Cheung Cole and Devanur (2019), Cheung Cole and Tao (2018), Cole and Fleischer, (2008), Uzawa (1960).
- Correa and Stier-Moses (2010), Powell and Sheffi (1982).

Cost of fluctuations:

Asker Collard-Wexler and De Loecker (2014), De Vany (1976), Carlton (1977), and Carlton (1978).

Model

Items: Arrive according to Poisson process, total rate $\mu = 1$

- Finite number of items $J_{\emptyset} = \{1, 2, \dots, J\} \cup \{\emptyset\}$
- With probability μ_i arriving item is of type j

Agents: Arrive according to Poisson process with total rate λ

- Agent type $\theta \in \Theta$, drawn i.i.d. according to distribution F
- Possibly uncountably many or finitely many types

Quasi-Linear Utility:

 $u_{\theta}(j,w)$ is the utility of type θ agent assigned item j with wait w

$$u_{\theta}(j,w) = v(\theta,j) - c(v)$$

- Agents can leave immediately (balk) to obtain utility $v(\theta, \phi) = 0$
- Values are private information
- $v(\theta, j)$ is bounded; $c(\cdot)$ is smooth, strictly increasing and convex or concave

N)

Assignments and Allocative Efficiency

Assignments η

Let $\eta_t \in J_{\emptyset}$ denote the item assigned to agent who arrived at t

Allocative efficiency

$$W(\eta) = \liminf_{T \to \infty} \frac{1}{|\mathcal{A}_T|} \sum_{t \in \mathcal{A}_T} \eta$$

Optimal allocative efficiency

$$W^{OPT} = \mathbb{E}\left[\sup_{\eta} W(\eta)\right]$$

Restricting attention to assignments η that satisfy a no-Ponzi condition

 $v(\theta_t, \eta_t)$

The Waiting List Mechanism

Separate queue for each item $j \in J$

- First Come First Served (FCFS) assignment policy
- Agents who join a queue wait until assigned (no reneging)

Choice of agent θ who observes q: $a(\theta, \mathbf{q}) = \operatorname*{argmax}_{j \in \mathcal{J} \cup \{\emptyset\}} \left\{ v(\theta, j) - \mathbb{E}[c(w_j)|\mathbf{q}] \right\}$

- Observes all queue lengths $q = (q_1, \ldots, q_I)$
- Can join any queue, or leave unassigned
- Simplified version of public housing assignment

The Waiting List Mechanism

Separate queue for each item $j \in J$

- First Come First Served (FCFS) assignment policy
- Agents who join a queue wait until assigned (no reneging)

Choice of agent θ who observes q: $a(\theta, \mathbf{q}) = \operatorname*{argmax}_{j \in \mathcal{J} \cup \{\emptyset\}} \left\{ v(\theta, j) - p_j(\mathbf{q}) \right\}$

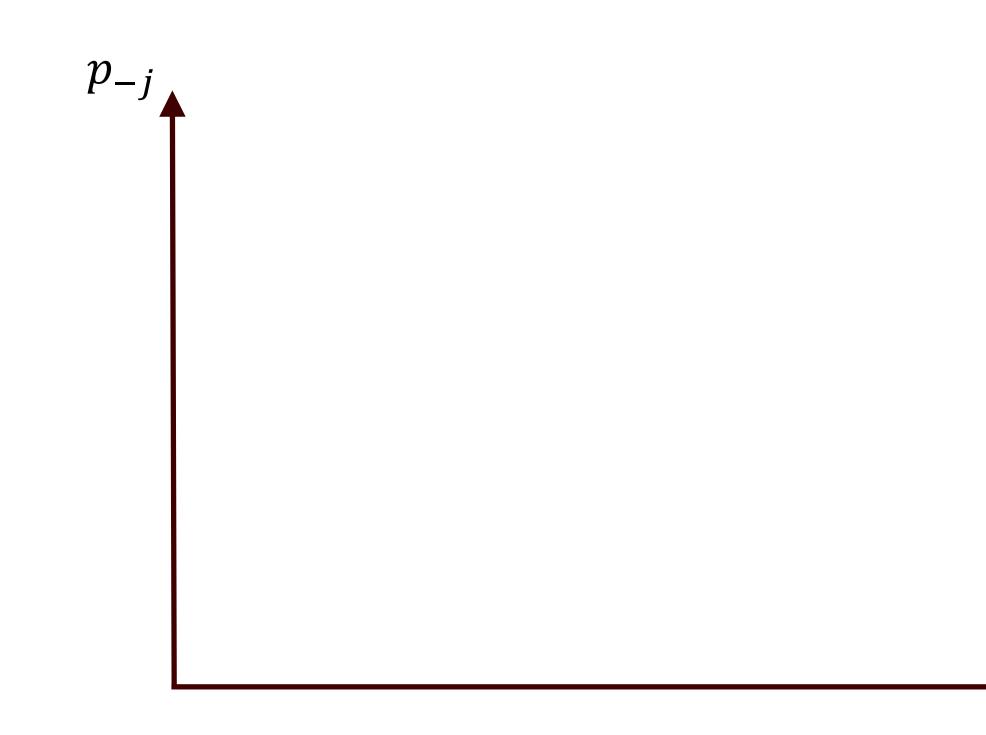
Observes state-dependent prices:

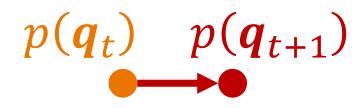
 $p_i(\boldsymbol{q}) = p_i(q_i) = \mathbb{E}[c(w_i)|q_i]$

Simplified version of public housing assignment

Stochastic Price Adaptation

Transition if agent arrives, sees queue lengths q_t , joins queue j



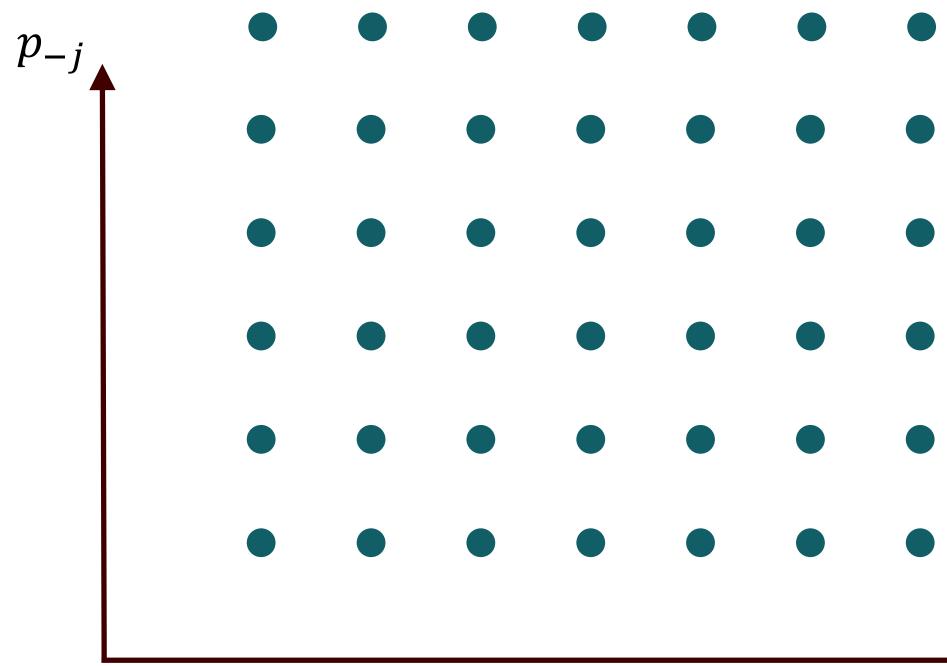


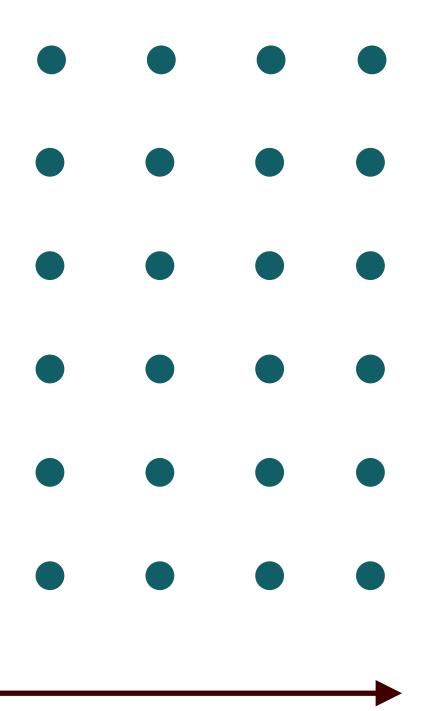
Stochastic Price Adaptation

Transition if item *j* arrives, assigned to an agent in queue *j*

Stochastic Price Adaptation

- Allocative efficiency W^{WL} is the expected match value under the steady state distribution
- When there are >2 items, the steady state distribution is not tractable





 p_j

The Waiting List Mechanism

The expected allocative efficiency under the waiting list is

$$W^{WL} = \mathbb{E}\big[W\big(\eta^{WL}\big)\big]$$

Adjustment size Δ is defined by

$$\Delta = \max_{j \in \mathcal{J}} \max_{1 \le q \le q_{\max}} \{ p_j(q) - p_j(q) \}$$

If waiting costs are linear $c(w) = c \cdot w$, then $\Delta = {}^{C}/\mu_{min}$

is the cost of waiting for one item arrival.

$-p_{i}(q-1)\}$

Main Result: Bounding Allocative Efficiency

Theorem 1: Allocative efficiency under the waiting list is bounded by

Main Result: Bounding Allocative Efficiency

Theorem 1': Suppose $p^* > 0$ for any market clearing p^* ; $c(\cdot)$ is linear. Then, allocative efficiency under the waiting list is

$$W^{WL} \geq W^{OPT} - \Delta$$
 -

The allocative efficiency loss is bounded by the cost of waiting for one item arrival

 High loss if an apartment arrives monthly, low loss if apartments arrive daily

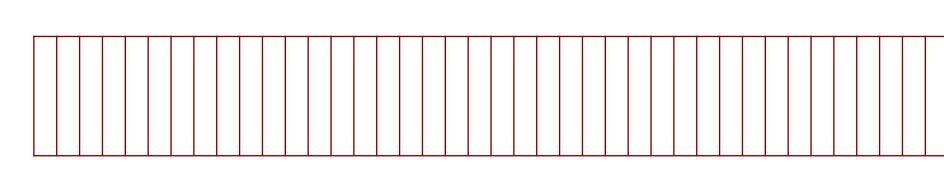
3

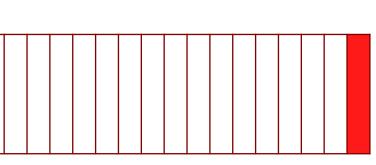
Main Result: Intuition

Suppose $p^* = cost$ of waiting six months

- If apartments arrives monthly, corresponding queue length is 5
- Each arrival significantly changes the price

- If apartments arrive daily, corresponding queue length is 180
- Each arrival slightly changes the price





Relation to Static Assignment

Let W^{*} be the optimal allocative efficiency in the corresponding static assignment problem:

$$W^* = \max_{\{x_{\theta j}\}_{\theta \in \Theta, j \in \mathcal{J}}} \sum_{j \in \mathcal{J}} \int_{\Theta} x_{\theta j} v(\theta, j) dF(\theta)$$

subject to
$$\sum_{j \in \mathcal{J}} x_{\theta j} \leq 1, \ x_{\theta j} \in [0,]$$
$$\int_{\Theta} \lambda x_{\theta j} dF(\theta) \leq \mu_j$$

Proposition:

$$W^{OPT} = W^*$$

- $\theta)$
- 1

 $\forall j \in \mathcal{J}$

Duality for the Static Assignment

Lemma (Monge-Kantorovich duality):

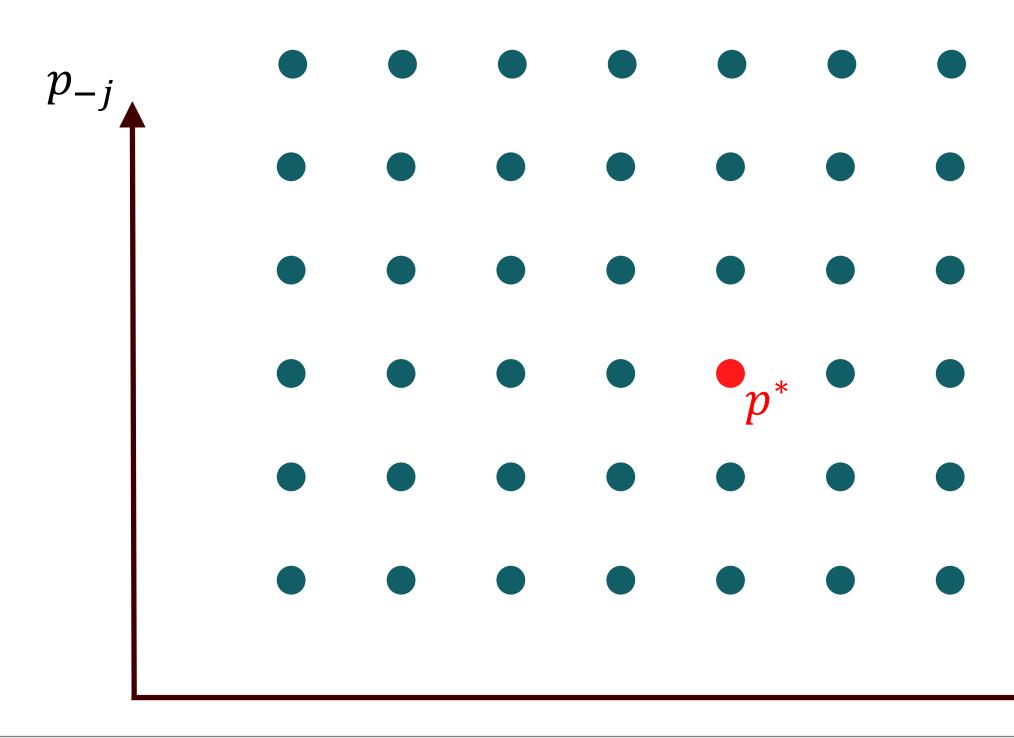
 $\min_{p\geq 0} h(p) = W^*$

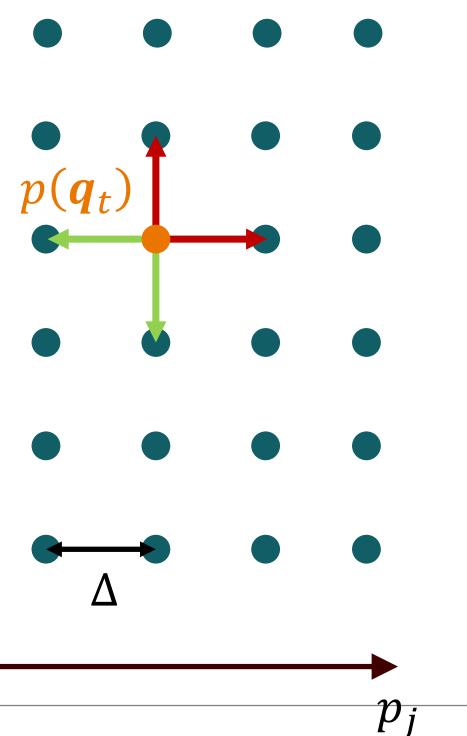
for

$h(p) = \int_{\Theta} \max_{j \in J \cup \{\emptyset\}} \left[v(\theta, j) - p_j \right] + \frac{1}{\lambda} \sum \mu_j p_j$

Relation to Stochastic Gradient Descent

- Let p^* denote optimal static prices
- Prices $p(q_t)$ change when an item arrives, or agent arrives
- Δ is the maximal adjustment size





Relation to Stochastic Gradient Descent

The expected adjustment is

$$\mathbb{E}[q_{j,t+1} - q_{j,t}] = \frac{\lambda}{1+\lambda} \int_{\Theta} \mathbf{1}_{\{a(\theta, q_t) = j\}}$$

which is a sub-gradient of the dual objective $h(\boldsymbol{p}) = \int_{\Theta} \max_{j \in \mathcal{J} \cup \{\emptyset\}} \left[v(\theta, j) - p_j \right] dF(\theta) + \frac{1}{\lambda} \sum_{i \in \mathcal{J}} \mu_j p_j$

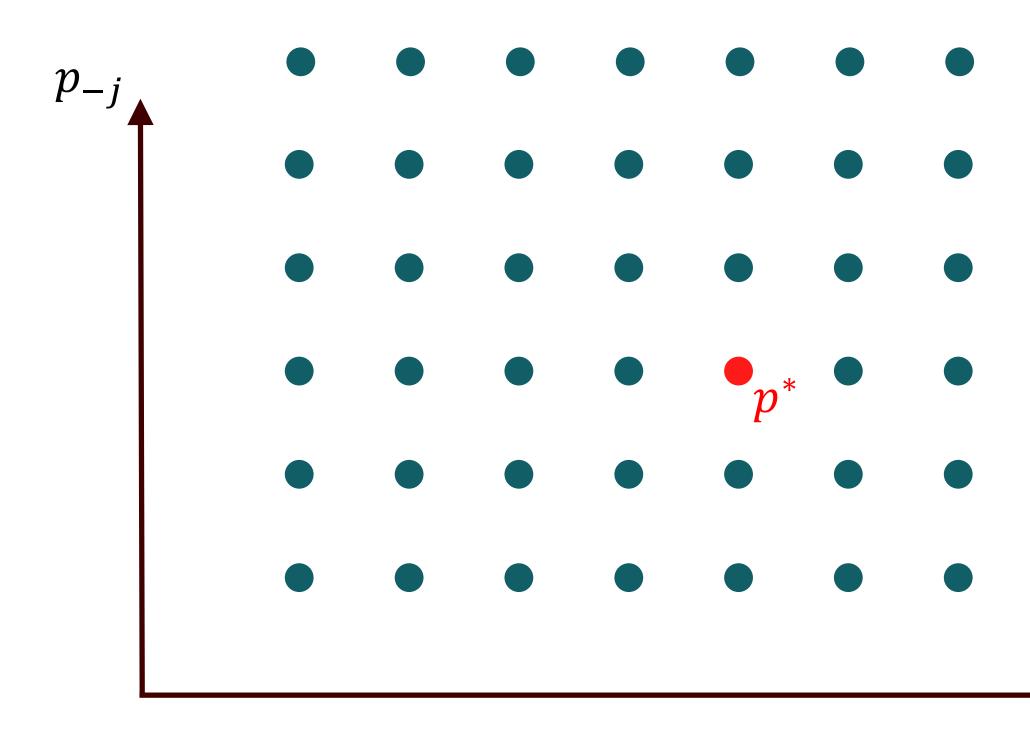
That is, the expected step is in direction of a gradient decent

- Works for deep learning
- Unlike when SGD is used for optimization, step size Δ is fixed and does not shrink to 0

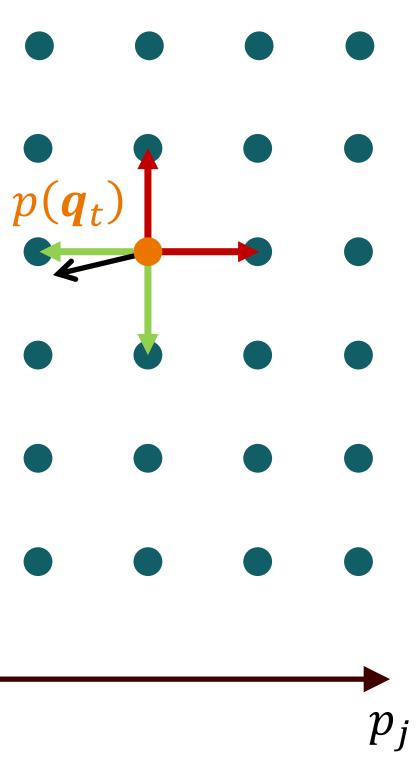
 $_{j}dF(\theta) - \frac{1}{1+\lambda}\mu_{j}$

Relation to Stochastic Gradient Descent

• Prices moves towards p^* in expectation



)



Proof Sketch

- Define a Lyapunov function L(q) such that $\nabla L(q) = p(q)$
- Decompose the value generated from each arrival:

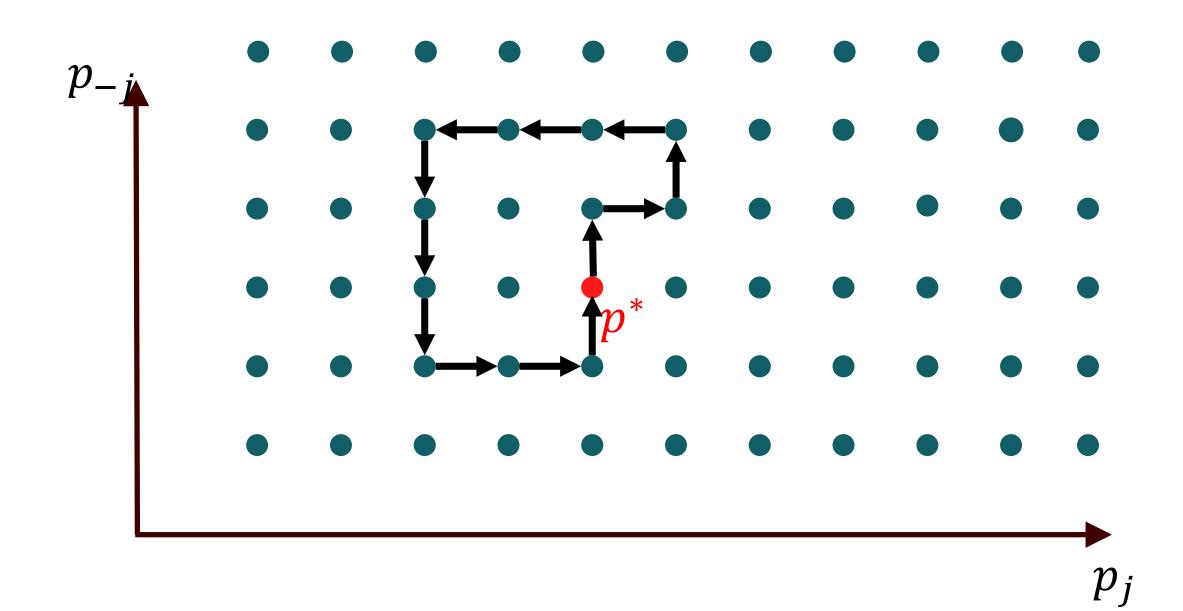
$$\mathbb{E}[v(\theta_t, a(\theta_t, \mathbf{q}_t)) | \mathbf{q}_t] \geq \frac{\lambda}{\lambda + 1} W^* - \underbrace{L(\mathbf{q}_t) - \mathbb{E}[L(\mathbf{q}_t)]}_{\text{(I) Change in Pot}} - \underbrace{\frac{2 + \lambda}{2(1 + \lambda)} \Delta}_{\text{(II) loss}}$$

 $|\mathbf{q}_t|$

tential

Proof Sketch

Over many periods, the potential term cancels out $\frac{1}{T}\sum_{T} \left[L(\boldsymbol{q}_{t}) - L(\boldsymbol{q}_{t+1})\right] = \frac{1}{T} \left(L(\boldsymbol{q}_{t_0}) - L(\boldsymbol{q}_{T})\right) \approx 0$ $t=t_0$



Proof Sketch

Decompose the value generated from each arrival:

$$\mathbb{E}[v(\theta_t, a(\theta_t, \mathbf{q}_t)) | \mathbf{q}_t] \geq \frac{\lambda}{\lambda + 1} W^* - \underbrace{L(\mathbf{q}_t) - \mathbb{E}[L(\mathbf{q}_t) -$$

- After canceling (I), the loss per period is bounded by (II)
 - Bound is independent of q_t , implying we do not need to calculate the stationary distribution

 $|\mathbf{q}_t|$

otential

When is the Loss High?

Proposition 2: For any number of items J there exist an economy where allocative efficiency is

 $W^{WL} \approx W^{OPT} - \Delta$

Example of High Loss

- Agents $\Theta = J$, each agent only wants the corresponding item $v(\theta, j) = \mathbf{1}_{\{\theta=j\}}$
- Identical arrival rates of items and corresponding agents
- Loss when an agent arrives and price is too high (maximal queue length)
- Loss proportional to $\Delta = c/\mu_i$
 - Queue lengths follow an unbiased reflected random walk
 - Queue lengths $q_i = 0, 1, 2, ..., 1/\Delta$ equally likely in steady state
 - Probability of hitting the boundary is roughly $1/_{1/\Delta}$.

When is the Loss Low?

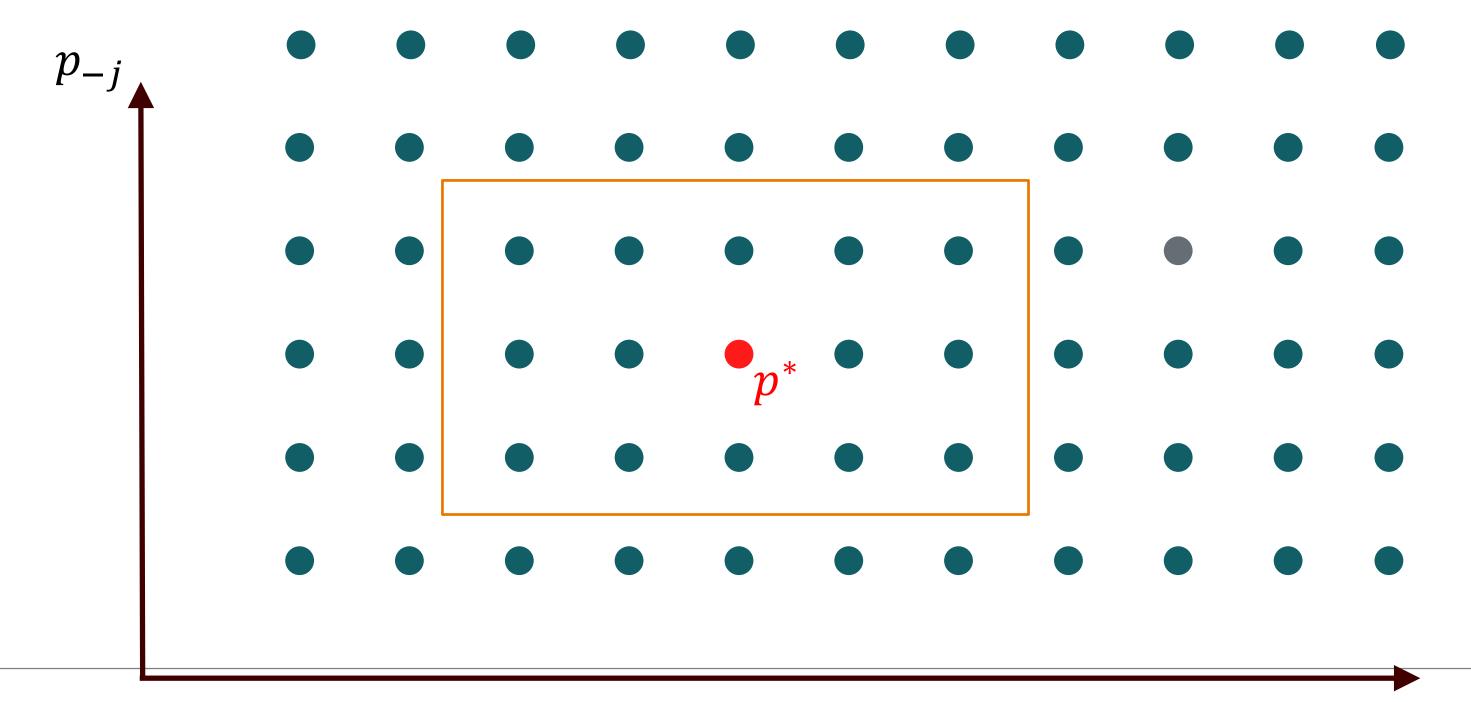
Theorem 3:

Consider an economy with finitely many agent types and linear waiting costs $c(w) = c \cdot w$. Suppose there is a unique market clearing price. Then there exist α , β , $c_0 > 0$ such that for any $c < c_0$ $W^{WL} \ge W^{OPT} - \beta e^{-\alpha/\Delta}$

Note: an economy with finitely many agents generically has a unique market clearing

Theorem 3: Stronger Concentration

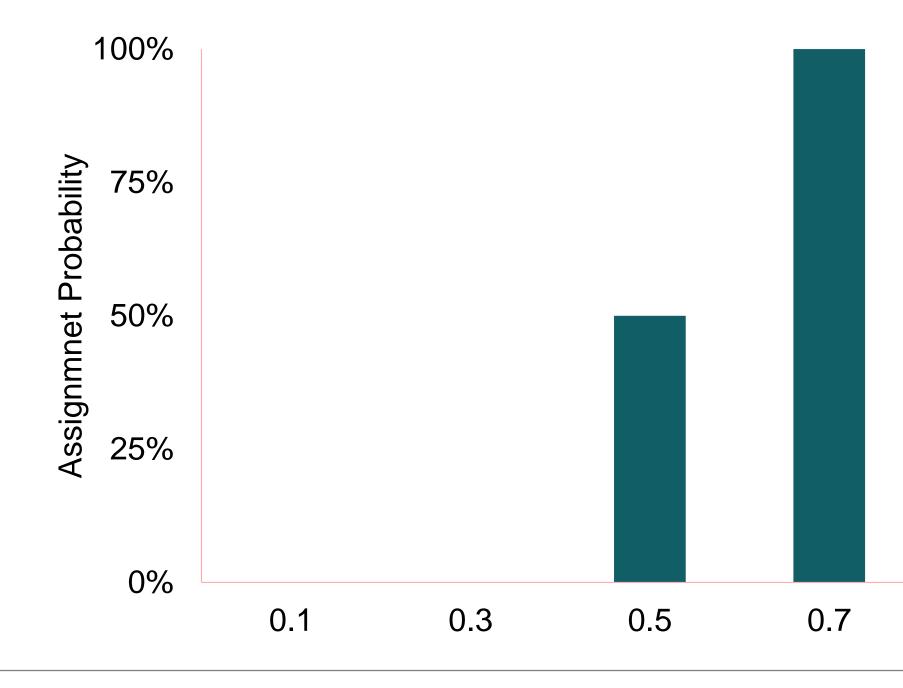
- If the dual is unique, no loss within a neighborhood of p^*
 - Agents only take items they are assigned under the optimal assignment with positive probability
- Biased random walk towards p^*



eighborhood of p^* d under the optimal

Theorem 3: Stronger concentration

- If the dual is unique, no loss within a neighborhood of p^*
- Biased random walk towards p^*



Optimal Adjustment Size and Price Rigidity

Consider a planner who can set prices, but does not know the distribution of agent preferences

- Agents arrive over time, can learn from choices of past agents
- Finite horizon T

A simple pricing SGD pricing heuristic:

- Increase price of item j by Δ when an agent chooses j
- Decrease the price of item j by Δ at rate proportional to supply

gent preferences choices of past agents

gent chooses *j* e proportional to supply

Optimal Adjustment Size and Price Rigidity

Theorem: The allocative efficiency of SGD pricing with adjustment size $\Delta = 1/\sqrt{T}$ is at least $W_T^{WL} \ge W_T^* - O(\sqrt{T})$

- Choice of intermediate Δ balances two sources of loss:
 - Smaller Δ implies less loss from price fluctuations
 - Larger Δ implies less transient loss during initial learning
- $O(\sqrt{T})$ is the minimal possible loss (Devanur et al. 2019)

Optimal Adjustment Size and Price Rigidity

Attractive simple pricing heuristic

- Efficiency guarantees
- Algorithm can operate continuously, even if demand changes
- No knowledge required, apart from frequency of changes

Naturally occurring pricing rigidity

- Prices continuously adjust, unaware of changes in demand
 - e.g., do Fed announcements affect demand for Italian food?
- Slow reaction when demand does change
 - Algorithm unsure whether it observes new demand patters or noise
- No need for menu costs, rational inattention, etc.

en if demand changes uency of changes

changes in demand for Italian food?

Conclusion

- Analysis of allocative efficiency in waiting lists
 - Simple, natural price adaptation process
- Connection to stochastic gradient decent
 - Bounds through Lyapunov functions
- Random fluctuations cause an efficiency loss
 - Simple price adaptation policy can do well
 - Loss depends on the "adjustment size" how much one arrival changes prices
- Pricing heuristic generates slow response to demand changes