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Price Discovery in Waiting Lists

Waiting times serve as prices in waiting lists

 Agents choose among items and associated waiting times

 Can be similar to standard competitive equilibria

Waiting list mechanisms are commonly used 

 e.g., public housing, organ allocation,…

Natural price discovery process

 Planner does not set prices

 Prices determined by endogenous queue lengths

 Prices adjust with each arrival 

• Similar to Tâtonnement – price increases with demand (agents join queue), 
decreases with supply (items arrive)



Example – Queueing for One Item

 Single item, arrives at Poisson rate 1

 Agents arrive at Poisson rate 2

 Agents observe the queue length, can join the queue or leave

 Quasilinear utility
𝑣 − 0.02 ⋅ 𝑤

with 𝑣~𝑈[0,1] i.i.d.

Static benchmark: 

 Collect all items and agents that arrive until (large) time 𝑇

 Assigning agents if 𝑣 ≥ 1/2 maximizes allocative efficiency 

 Market clearing price is p∗ = 1/2



Example – One Item
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Example – One Item
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Price Discovery in Waiting Lists

Question: Allocative efficiency under fluctuating prices

Main Result: Loss from price fluctuations is bounded by the 

adjustment size

 Bound is (almost) tight

 Conditions for when the loss is negligible

Methodological contribution:

 Price adaptation as a stochastic gradient decent (SGD)

 Duality, Lyapunov functions

•Price rigidity: tradeoff between learning speed and overreaction
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Model

Items: Arrive according to Poisson process, total rate 𝜇 = 1
 Finite number of items 𝐽∅ = 1,2, … , 𝐽 ∪ {∅}

 With probability 𝜇𝑗 arriving item is of type 𝑗

Agents: Arrive according to Poisson process with total rate 𝜆
 Agent type 𝜃 ∈ Θ, drawn i.i.d. according to distribution 𝐹

 Possibly uncountably many or finitely many types

Quasi-Linear Utility:

 u𝜃 𝑗, 𝑤 is the utility of type 𝜃 agent assigned item 𝑗 with wait 𝑤

u𝜃 𝑗, 𝑤 = 𝑣 𝜃, 𝑗 − 𝑐 𝑤

 Agents can leave immediately (balk) to obtain utility 𝑣 𝜃, ∅ = 0

 Values are private information

 𝑣(𝜃, 𝑗) is bounded; 𝑐 ⋅ is smooth, strictly increasing and convex or concave 



Assignments and Allocative Efficiency

Assignments 𝜼

Let 𝜂𝑡 ∈ 𝐽∅ denote the item assigned to agent who arrived at 𝑡

Allocative efficiency

𝑊 𝜂 = liminf
𝑇→∞

1

|𝒜𝑇|
෍

𝑡∈𝒜𝑇

𝑣 𝜃𝑡 , 𝜂𝑡

Optimal allocative efficiency

𝑊𝑂𝑃𝑇 = 𝔼 sup
𝜂
𝑊 𝜂

 Restricting attention to assignments 𝜂 that satisfy a no-Ponzi condition



The Waiting List Mechanism

Separate queue for each item 𝑗 ∈ 𝐽

 First Come First Served (FCFS) assignment policy

 Agents who join a queue wait until assigned (no reneging)

Choice of agent 𝜃 who observes 𝒒:

 Observes all queue lengths 𝒒 = 𝑞1, . . , 𝑞𝐽

 Can join any queue, or leave unassigned

 Simplified version of public housing assignment



The Waiting List Mechanism

Separate queue for each item 𝑗 ∈ 𝐽

 First Come First Served (FCFS) assignment policy

 Agents who join a queue wait until assigned (no reneging)

Choice of agent 𝜃 who observes 𝒒:

 Observes state-dependent prices: 

𝑝𝑗 𝒒 = 𝑝𝑗 𝑞𝑗 = 𝔼 𝑐 𝑤𝑗 | 𝑞𝑗

 Simplified version of public housing assignment



Stochastic Price Adaptation

Transition if agent arrives, sees queue lengths 𝒒𝑡, joins queue 𝑗

𝑝𝑗

𝑝−𝑗

𝑝 𝒒𝑡 𝑝 𝒒𝑡+1



Stochastic Price Adaptation

Transition if item 𝑗 arrives, assigned to an agent in queue 𝑗

𝑝𝑗

𝑝−𝑗

𝑝 𝒒𝑡

𝑝 𝒒𝑡+1



Stochastic Price Adaptation

𝑝𝑗

𝑝−𝑗

 Allocative efficiency 𝑊𝑊𝐿 is the expected match value under 

the steady state distribution

 When there are >2 items, the steady state distribution is not 

tractable



The Waiting List Mechanism

 The expected allocative efficiency under the waiting list is 

𝑊𝑊𝐿 = 𝔼 𝑊 𝜂𝑊𝐿

 Adjustment size Δ is defined by

 If waiting costs are linear 𝑐 𝑤 = 𝑐 ⋅ 𝑤, then 

Δ = ൗ𝑐 𝜇𝑚𝑖𝑛

is the cost of waiting for one item arrival.



Main Result: Bounding Allocative Efficiency

Theorem 1:

Allocative efficiency under the waiting list is bounded by

𝑊𝑊𝐿 ≥ 𝑊𝑂𝑃𝑇 −
𝜆 + 2

2𝜆
Δ



Main Result: Bounding Allocative Efficiency

Theorem 1’:

Suppose 𝑝∗ > 0 for any market clearing 𝑝∗; 𝑐 ⋅ is linear.  

Then, allocative efficiency under the waiting list is

𝑊𝑊𝐿 ≥ 𝑊𝑂𝑃𝑇 − Δ − 𝜀

The allocative efficiency loss is bounded by the cost of 

waiting for one item arrival

 High loss if an apartment arrives monthly, low loss if 

apartments arrive daily 



Main Result: Intuition

Suppose 𝒑∗ = cost of waiting six months

 If apartments arrives monthly, corresponding queue length is 5

 Each arrival significantly changes the price

 If apartments arrive daily, corresponding queue length is 180

 Each arrival slightly changes the price



Relation to Static Assignment

Let 𝑊∗ be the optimal allocative efficiency in the corresponding 
static assignment problem:

Proposition:

𝑊𝑂𝑃𝑇 = 𝑊∗



Duality for the Static Assignment

Lemma (Monge-Kantorovich duality):

min
𝒑≥𝟎

ℎ 𝒑 = 𝑊∗

for 

ℎ 𝑝 = න
Θ

max
𝑗∈𝐽∪ ∅

𝑣 𝜃, 𝑗 − 𝑝𝑗 +
1

𝜆
෍

𝑗∈𝐽

𝜇𝑗𝑝𝑗



 Let 𝑝∗ denote optimal static prices

 Prices 𝑝 𝒒𝑡 change when an item arrives, or agent arrives

 Δ is the maximal adjustment size

Relation to Stochastic Gradient Descent

𝑝𝑗

𝑝−𝑗

𝑝∗

𝑝 𝒒𝑡

Δ



Relation to Stochastic Gradient Descent

The expected adjustment is 

which is a sub-gradient of the dual objective

That is, the expected step is in direction of a gradient decent

 Works for deep learning

 Unlike when SGD is used for optimization, step size Δ is fixed and does 

not shrink to 0



 Prices moves towards 𝑝∗ in expectation

Relation to Stochastic Gradient Descent

𝑝𝑗

𝑝−𝑗

𝑝∗

𝑝 𝒒𝑡



Proof Sketch

 Define a Lyapunov function 𝐿 𝑞 such that 𝛻𝐿 𝑞 = 𝑝 𝑞

 Decompose the value generated from each arrival:



Proof Sketch

 Over many periods, the potential term cancels out

1

T
෍

𝑡=𝑡0

𝑇

𝐿 𝒒𝑡 − 𝐿 𝒒𝑡+1 =
1

𝑇
𝐿 𝒒𝑡0 − 𝐿 𝒒𝑇 ≈ 0

𝑝𝑗

𝑝−𝑗

𝑝∗



Proof Sketch

 Decompose the value generated from each arrival:

 After canceling I , the loss per period is bounded by II

 Bound is independent of 𝒒𝑡, implying we do not need to calculate the 

stationary distribution



When is the Loss High?

Proposition 2:

For any number of items 𝐽 there exist an economy where 

allocative efficiency is 

𝑊𝑊𝐿 ≈ 𝑊𝑂𝑃𝑇 − Δ



Example of High Loss

 Agents Θ = 𝐽, each agent only wants the corresponding item

𝑣 𝜃, 𝑗 = 𝟏 𝜃=𝑗

 Identical arrival rates of items and corresponding agents

 Loss when an agent arrives and price is too high (maximal queue 

length)

 Loss proportional to Δ = 𝑐/𝜇𝑗
 Queue lengths follow an unbiased reflected random walk

 Queue lengths 𝑞𝑗 = 0,1,2, … , 1/Δ equally likely in steady state 

 Probability of hitting the boundary is roughly ൗ1 Τ1 Δ. 



When is the Loss Low?

 Note: an economy with finitely many agents generically has a 

unique market clearing

Theorem 3:

Consider an economy with finitely many agent types and linear 

waiting costs 𝑐 𝑤 = 𝑐 ⋅ 𝑤. Suppose there is a unique market clearing 

price. Then there exist 𝛼, 𝛽, 𝑐0 > 0 such that for any 𝑐 < 𝑐0

𝑊𝑊𝐿 ≥ 𝑊𝑂𝑃𝑇 − 𝛽𝑒−𝛼/Δ



 If the dual is unique, no loss within a neighborhood of 𝑝∗

 Agents only take items they are assigned under the optimal 

assignment with positive probability

 Biased random walk towards 𝑝∗

Theorem 3: Stronger Concentration

𝑝𝑗

𝑝−𝑗

𝑝∗



 If the dual is unique, no loss within a neighborhood of 𝑝∗

 Biased random walk towards 𝑝∗

Theorem 3: Stronger concentration
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Optimal Adjustment Size and Price Rigidity

Consider a planner who can set prices, 

but does not know the distribution of agent preferences

 Agents arrive over time, can learn from choices of past agents

 Finite horizon 𝑇

A simple pricing SGD pricing heuristic: 

 Increase price of item 𝑗 by Δ when an agent chooses 𝑗

 Decrease the price of item 𝑗 by Δ at rate proportional to supply



Optimal Adjustment Size and Price Rigidity

 Choice of intermediate Δ balances two sources of loss:

 Smaller Δ implies less loss from price fluctuations

 Larger Δ implies less transient loss during initial learning

 𝑂 𝑇 is the minimal possible loss (Devanur et al. 2019)

Theorem:

The allocative efficiency of SGD pricing with adjustment 

size Δ = Τ1 𝑇 is at least

𝑊𝑇
𝑊𝐿 ≥ 𝑊𝑇

∗ − 𝑂 𝑇



Optimal Adjustment Size and Price Rigidity

Attractive simple pricing heuristic

 Efficiency guarantees

 Algorithm can operate continuously, even if demand changes

 No knowledge required, apart from frequency of changes

Naturally occurring pricing rigidity 

 Prices continuously adjust, unaware of changes in demand

 e.g., do Fed announcements affect demand for Italian food?

 Slow reaction when demand does change

 Algorithm unsure whether it observes new demand patters or noise

 No need for menu costs, rational inattention, etc. 



Conclusion

 Analysis of allocative efficiency in waiting lists

 Simple, natural price adaptation process

 Connection to stochastic gradient decent

 Bounds through Lyapunov functions

 Random fluctuations cause an efficiency loss

 Simple price adaptation policy can do well

 Loss depends on the “adjustment size” – how much one arrival changes 
prices

 Pricing heuristic generates slow response to demand changes


