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Price Discovery In Walting Lists

Waliting times serve as prices in waiting lists
= Agents choose among items and associated waiting times
= Can be similar to standard competitive equilibria

Waiting list mechanisms are commonly used
" e.g., public housing, organ allocation,...

Natural price discovery process
= Planner does not set prices
= Prices determined by endogenous gueue lengths

= Prices adjust with each arrival

Similar to Tatonnement — price increases with demand (agents join queue),
decreases with supply (items arrive)
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Example — Queueing for One ltem

= Single item, arrives at Poisson rate 1

= Agents arrive at Poisson rate 2

= Agents observe the queue length, can join the queue or leave

= Quasllinear utility
v—0.02-w

with v~U[0,1] i.i.d.

Static benchmark:
= Collect all items and agents that arrive until (large) time T
= Assigning agents if v > 1/2 maximizes allocative efficiency
= Market clearing priceis p* =1/2
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Example — One ltem

9%

0% -.lIIII|||||| |‘|||||IIII.-

1 23456 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950

Queue Length

Probabillity in steady state
N W oY a1 @) ~ (@)
x N x x N x x

=Y




-
Example — One ltem
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Price Discovery In Walting Lists

Question: Allocative efficiency under fluctuating prices

Main Result: Loss from price fluctuations is bounded by the
adjustment size

= Bound is (almost) tight
= Conditions for when the loss Is negligible

Methodological contribution:

= Price adaptation as a stochastic gradient decent (SGD)
= Duality, Lyapunov functions

Price rigidity: tradeoff between learning speed and overreaction
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Model

ltems: Arrive according to Poisson process, total rate u = 1
=  Finite number of items Jy = {1,2, ...,]} U {@}
= With probability u; arriving item Is of type j

Agents: Arrive according to Poisson process with total rate A

= Agenttype 8 € 0, drawn 1.1.d. according to distribution F
= Possibly uncountably many or finitely many types

Quasi-Linear Utility:
= ug(j,w) is the utility of type 6 agent assigned item j with wait w

ug(j,w) = v(8,j) — c(w)

= Agents can leave immediately (balk) to obtain utility v(8,9) = 0
= Values are private information
= p(6,)) is bounded; c(-) is smooth, strictly increasing and convex or concave
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Assignments and Allocative Efficiency

Assignments n
Let n, € J; denote the item assigned to agent who arrived at ¢

Allocative efficiency

1
W(n) = liminf 2 v(6:,n,)
n ‘CJQT‘ tr Nt

T—o00
teAT

Optimal allocative efficiency

W = E[supW () |
n
= Restricting attention to assignments n that satisfy a no-Ponzi condition
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The Waiting List Mechanism

Separate queue for each itemj € J

= First Come First Served (FCFS) assignment policy
= Agents who join a queue walit until assigned (no reneging)

Choice of agent 8 who observes q:

a(f,q) = argmax {v(&j) - *3[C(wj)\q]}

= Observes all queue lengths g = (q1; --,q])

= Can join any gueue, or leave unassigned

= Simplified version of public housing assignment




-
The Waiting List Mechanism

Separate queue for each itemj € J

= First Come First Served (FCFS) assignment policy
= Agents who join a queue walit until assigned (no reneging)

Choice of agent 8 who observes q:

a(0, ) = argmax {v(6, j) - p;(a) }
jeTU{0}

= QObserves state-dependent prices:

pi(@) = p;(q;) = E[c(w;)] q;]
= Simplified version of public housing assignment
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Stochastic Price Adaptation

Transition If agent arrives, sees queue lengths q,, joins queue |

p(q:) p(qreq)
Oo—>0
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Stochastic Price Adaptation

Transition If item j arrives, assigned to an agent in queue j

p(q;)
@+—

p(qii1)




Stochastic Price Adaptation

= Allocative efficiency W' is the expected match value under
the steady state distribution

= When there are >2 items, the steady state distribution IS not
tractable

P-j
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The Waiting List Mechanism

* The expected allocative efficiency under the waiting list is

W= B[ ()

= Adjustment size A is defined by

A = ma a ~ — (g —1
max | max {ps(@) =20~ )

= |f waiting costs are linear c(w) = c - w, then

A= C/.umin

IS the cost of waliting for one item arrival.




Main Result: Bounding Allocative Efficiency

Theorem 1:
Allocative efficiency under the waiting list is bounded by




Main Result: Bounding Allocative Efficiency

Theorem 1°:
Suppose p* > 0 for any market clearing p*; c(:) Is lineatr.

Then, allocative efficiency under the waiting list Is

WWh > WOPT — A —¢

The allocative efficiency loss Is bounded by the cost of
waiting for one item arrival

= High loss If an apartment arrives monthly, low loss If
apartments arrive daily




Main Result: Intuition

Suppose p* = cost of walting six months

= |[f apartments arrives monthly, corresponding queue length Is 5

= Each arrival significantly changes the price

= |[f apartments arrive daily, corresponding queue length is 180
= Each arrival slightly changes the price




-
Relation to Static Assignment

Let W™ be the optimal allocative efficiency In the corresponding
static assignment problem:

{3393'}966,3'63

W* = max Z/ zg; v(0,7)dF(0)
ey’ O

subject to Z rg; <1, xp; € |0,1] Vo € ©
jeJ
S

Proposition:
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Duality for the Static Assignment

Lemma (Monge-Kantorovich duality):

min h(p) = W*
p=0

1
h(p) = | max [v(0,)) —p/] +12 Wib;

o) JEJU{D}

JEJ




Relation to Stochastic Gradient Descent

= Let p* denote optimal static prices
» Prices p(q;) change when an , Or agent arrives
= A Is the maximal adjustment size

O O O

O O O O O O O O O O
p(q¢) ‘

O O O O O O O [ < O
O D O

P-j




Relation to Stochastic Gradient Descent

The expected adjustment Is

A 1
1 _~dF'(6 -

which Is a sub-gradient of the dual objective

h(p) — 0, | dF (6
(p) e (0, §) — ;] dF(0) + J;jugpa

Q5,401 — Qe =

That Is, the expected step is Iin direction of a gradient decent

= Works for deep learning

= Unlike when SGD is used for optimization, step size A is fixed and does
not shrink to O




Relation to Stochastic Gradient Descent

= Prices moves towards p™* In expectation
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Proof Sketch

= Define a Lyapunov function L(q) such that VL(q) = p(q)

= Decompose the value generated from each arrival:

Clv(0r, a0, qr))|ae] > W=

— L(a¢) — E[L(qg¢+1)lae
(I) Change in Potential
24+ A

21+ \)
S —
(IT) loss
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Proof Sketch

= Qver many periods, the potential term cancels out

TE 1) ~ L)) = 7 L(as,) — Lgp) = 0
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Proof Sketch

= Decompose the value generated from each arrival:

Clv(0r, a0, qr))|ae] > W=

— L(a¢) — E[L(qg¢+1)lae
(I) Change in Potential
24+ A

21+ \)
S —
(IT) loss

= After canceling (I), the loss per period is bounded by (II)

= Bound is independent of g;, implying we do not need to calculate the
stationary distribution
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When Is the Loss High?

Proposition 2:
For any number of items J there exist an economy where

allocative efficiency Is

WWL ~ WOPT — A
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Example of High Loss

= Agents ® = J, each agent only wants the corresponding item
U(H,]) — 1{9=]}

= |dentical arrival rates of items and corresponding agents

= Loss when an agent arrives and price Is too high (maximal queue
length)

= Loss proportional to A = c/u;

= Queue lengths follow an unbiased reflected random walk

= Queue lengths q; = 0,1,2, ..., 1/A equally likely in steady state

= Probability of hitting the boundary is roughly */; /4.
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When iIs the Loss Low?

Theorem 3.
Consider an economy with finitely many agent types and linear
waiting costs c(w) = ¢ - w. Suppose there is a unique market clearing

price. Then there exist a, 5, c, > 0 such that for any ¢ < c¢g

WWL > WOPT _ ﬁe‘“/A

= Note: an economy with finitely many agents generically has a
unigue market clearing
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Theorem 3: Stronger Concentration

= |f the dual Is unique, no loss within a neighborhood of p*

= Agents only take items they are assigned under the optimal
assignment with positive probability

= Biased random walk towards p*

P-j
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Theorem 3: Stronger concentration

= |f the dual Is unique, no loss within a neighborhood of p*
= Bilased random walk towards p*
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Optimal Adjustment Size and Price Rigidity

Consider a planner who can set prices,

but does not know the distribution of agent preferences
= Agents arrive over time, can learn from choices of past agents
= Finite horizon T

A simple pricing SGD pricing heuristic:
* |[ncrease price of item j by A when an agent chooses j
» Decrease the price of item j by A at rate proportional to supply




Optimal Adjustment Size and Price Rigidity

Theorem:
The allocative efficiency of SGD pricing with adjustment

size A = 1/+/T is at least
WPt > ws — o(NT)

= Choice of intermediate A balances two sources of loss:

= Smaller A implies less loss from price fluctuations
= Larger A implies less transient loss during initial learning

= 0(V/T) is the minimal possible loss (Devanur et al. 2019)




Optimal Adjustment Size and Price Rigidity

Attractive simple pricing heuristic
= Efficiency guarantees
= Algorithm can operate continuously, even if demand changes
= No knowledge required, apart from frequency of changes

Naturally occurring pricing rigidity
= Prices continuously adjust, unaware of changes in demand

= e.d., do Fed announcements affect demand for Italian food?

= Slow reaction when demand does change
= Algorithm unsure whether it observes new demand patters or noise

= No need for menu costs, rational inattention, etc.
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Conclusion

= Analysis of allocative efficiency in waiting lists
= Simple, natural price adaptation process

= Connection to stochastic gradient decent
=  Bounds through Lyapunov functions

= Random fluctuations cause an efficiency loss
= Simple price adaptation policy can do well

= Loss depends on the "adjustment size” — how much one arrival changes
prices

= Pricing heuristic generates slow response to demand changes




