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Price Discovery in Waiting Lists

Waiting times serve as prices in waiting lists

 Agents choose among items and associated waiting times

 Can be similar to standard competitive equilibria

Waiting list mechanisms are commonly used 

 e.g., public housing, organ allocation,…

Natural price discovery process

 Planner does not set prices

 Prices determined by endogenous queue lengths

 Prices adjust with each arrival 

• Similar to Tâtonnement – price increases with demand (agents join queue), 
decreases with supply (items arrive)



Example – Queueing for One Item

 Single item, arrives at Poisson rate 1

 Agents arrive at Poisson rate 2

 Agents observe the queue length, can join the queue or leave

 Quasilinear utility
𝑣 − 0.02 ⋅ 𝑤

with 𝑣~𝑈[0,1] i.i.d.

Static benchmark: 

 Collect all items and agents that arrive until (large) time 𝑇

 Assigning agents if 𝑣 ≥ 1/2 maximizes allocative efficiency 

 Market clearing price is p∗ = 1/2



Example – One Item
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Example – One Item
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Price Discovery in Waiting Lists

Question: Allocative efficiency under fluctuating prices

Main Result: Loss from price fluctuations is bounded by the 

adjustment size

 Bound is (almost) tight

 Conditions for when the loss is negligible

Methodological contribution:

 Price adaptation as a stochastic gradient decent (SGD)

 Duality, Lyapunov functions

•Price rigidity: tradeoff between learning speed and overreaction
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Model

Items: Arrive according to Poisson process, total rate 𝜇 = 1
 Finite number of items 𝐽∅ = 1,2, … , 𝐽 ∪ {∅}

 With probability 𝜇𝑗 arriving item is of type 𝑗

Agents: Arrive according to Poisson process with total rate 𝜆
 Agent type 𝜃 ∈ Θ, drawn i.i.d. according to distribution 𝐹

 Possibly uncountably many or finitely many types

Quasi-Linear Utility:

 u𝜃 𝑗, 𝑤 is the utility of type 𝜃 agent assigned item 𝑗 with wait 𝑤

u𝜃 𝑗, 𝑤 = 𝑣 𝜃, 𝑗 − 𝑐 𝑤

 Agents can leave immediately (balk) to obtain utility 𝑣 𝜃, ∅ = 0

 Values are private information

 𝑣(𝜃, 𝑗) is bounded; 𝑐 ⋅ is smooth, strictly increasing and convex or concave 



Assignments and Allocative Efficiency

Assignments 𝜼

Let 𝜂𝑡 ∈ 𝐽∅ denote the item assigned to agent who arrived at 𝑡

Allocative efficiency

𝑊 𝜂 = liminf
𝑇→∞

1

|𝒜𝑇|


𝑡∈𝒜𝑇

𝑣 𝜃𝑡 , 𝜂𝑡

Optimal allocative efficiency

𝑊𝑂𝑃𝑇 = 𝔼 sup
𝜂
𝑊 𝜂

 Restricting attention to assignments 𝜂 that satisfy a no-Ponzi condition



The Waiting List Mechanism

Separate queue for each item 𝑗 ∈ 𝐽

 First Come First Served (FCFS) assignment policy

 Agents who join a queue wait until assigned (no reneging)

Choice of agent 𝜃 who observes 𝒒:

 Observes all queue lengths 𝒒 = 𝑞1, . . , 𝑞𝐽

 Can join any queue, or leave unassigned

 Simplified version of public housing assignment



The Waiting List Mechanism

Separate queue for each item 𝑗 ∈ 𝐽

 First Come First Served (FCFS) assignment policy

 Agents who join a queue wait until assigned (no reneging)

Choice of agent 𝜃 who observes 𝒒:

 Observes state-dependent prices: 

𝑝𝑗 𝒒 = 𝑝𝑗 𝑞𝑗 = 𝔼 𝑐 𝑤𝑗 | 𝑞𝑗

 Simplified version of public housing assignment



Stochastic Price Adaptation

Transition if agent arrives, sees queue lengths 𝒒𝑡, joins queue 𝑗

𝑝𝑗

𝑝−𝑗

𝑝 𝒒𝑡 𝑝 𝒒𝑡+1



Stochastic Price Adaptation

Transition if item 𝑗 arrives, assigned to an agent in queue 𝑗

𝑝𝑗

𝑝−𝑗

𝑝 𝒒𝑡

𝑝 𝒒𝑡+1



Stochastic Price Adaptation

𝑝𝑗

𝑝−𝑗

 Allocative efficiency 𝑊𝑊𝐿 is the expected match value under 

the steady state distribution

 When there are >2 items, the steady state distribution is not 

tractable



The Waiting List Mechanism

 The expected allocative efficiency under the waiting list is 

𝑊𝑊𝐿 = 𝔼 𝑊 𝜂𝑊𝐿

 Adjustment size Δ is defined by

 If waiting costs are linear 𝑐 𝑤 = 𝑐 ⋅ 𝑤, then 

Δ = ൗ𝑐 𝜇𝑚𝑖𝑛

is the cost of waiting for one item arrival.



Main Result: Bounding Allocative Efficiency

Theorem 1:

Allocative efficiency under the waiting list is bounded by

𝑊𝑊𝐿 ≥ 𝑊𝑂𝑃𝑇 −
𝜆 + 2

2𝜆
Δ



Main Result: Bounding Allocative Efficiency

Theorem 1’:

Suppose 𝑝∗ > 0 for any market clearing 𝑝∗; 𝑐 ⋅ is linear.  

Then, allocative efficiency under the waiting list is

𝑊𝑊𝐿 ≥ 𝑊𝑂𝑃𝑇 − Δ − 𝜀

The allocative efficiency loss is bounded by the cost of 

waiting for one item arrival

 High loss if an apartment arrives monthly, low loss if 

apartments arrive daily 



Main Result: Intuition

Suppose 𝒑∗ = cost of waiting six months

 If apartments arrives monthly, corresponding queue length is 5

 Each arrival significantly changes the price

 If apartments arrive daily, corresponding queue length is 180

 Each arrival slightly changes the price



Relation to Static Assignment

Let 𝑊∗ be the optimal allocative efficiency in the corresponding 
static assignment problem:

Proposition:

𝑊𝑂𝑃𝑇 = 𝑊∗



Duality for the Static Assignment

Lemma (Monge-Kantorovich duality):

min
𝒑≥𝟎

ℎ 𝒑 = 𝑊∗

for 

ℎ 𝑝 = න
Θ

max
𝑗∈𝐽∪ ∅

𝑣 𝜃, 𝑗 − 𝑝𝑗 +
1

𝜆


𝑗∈𝐽

𝜇𝑗𝑝𝑗



 Let 𝑝∗ denote optimal static prices

 Prices 𝑝 𝒒𝑡 change when an item arrives, or agent arrives

 Δ is the maximal adjustment size

Relation to Stochastic Gradient Descent

𝑝𝑗

𝑝−𝑗

𝑝∗

𝑝 𝒒𝑡

Δ



Relation to Stochastic Gradient Descent

The expected adjustment is 

which is a sub-gradient of the dual objective

That is, the expected step is in direction of a gradient decent

 Works for deep learning

 Unlike when SGD is used for optimization, step size Δ is fixed and does 

not shrink to 0



 Prices moves towards 𝑝∗ in expectation

Relation to Stochastic Gradient Descent

𝑝𝑗

𝑝−𝑗

𝑝∗

𝑝 𝒒𝑡



Proof Sketch

 Define a Lyapunov function 𝐿 𝑞 such that 𝛻𝐿 𝑞 = 𝑝 𝑞

 Decompose the value generated from each arrival:



Proof Sketch

 Over many periods, the potential term cancels out

1

T


𝑡=𝑡0

𝑇

𝐿 𝒒𝑡 − 𝐿 𝒒𝑡+1 =
1

𝑇
𝐿 𝒒𝑡0 − 𝐿 𝒒𝑇 ≈ 0

𝑝𝑗

𝑝−𝑗

𝑝∗



Proof Sketch

 Decompose the value generated from each arrival:

 After canceling I , the loss per period is bounded by II

 Bound is independent of 𝒒𝑡, implying we do not need to calculate the 

stationary distribution



When is the Loss High?

Proposition 2:

For any number of items 𝐽 there exist an economy where 

allocative efficiency is 

𝑊𝑊𝐿 ≈ 𝑊𝑂𝑃𝑇 − Δ



Example of High Loss

 Agents Θ = 𝐽, each agent only wants the corresponding item

𝑣 𝜃, 𝑗 = 𝟏 𝜃=𝑗

 Identical arrival rates of items and corresponding agents

 Loss when an agent arrives and price is too high (maximal queue 

length)

 Loss proportional to Δ = 𝑐/𝜇𝑗
 Queue lengths follow an unbiased reflected random walk

 Queue lengths 𝑞𝑗 = 0,1,2, … , 1/Δ equally likely in steady state 

 Probability of hitting the boundary is roughly ൗ1 Τ1 Δ. 



When is the Loss Low?

 Note: an economy with finitely many agents generically has a 

unique market clearing

Theorem 3:

Consider an economy with finitely many agent types and linear 

waiting costs 𝑐 𝑤 = 𝑐 ⋅ 𝑤. Suppose there is a unique market clearing 

price. Then there exist 𝛼, 𝛽, 𝑐0 > 0 such that for any 𝑐 < 𝑐0

𝑊𝑊𝐿 ≥ 𝑊𝑂𝑃𝑇 − 𝛽𝑒−𝛼/Δ



 If the dual is unique, no loss within a neighborhood of 𝑝∗

 Agents only take items they are assigned under the optimal 

assignment with positive probability

 Biased random walk towards 𝑝∗

Theorem 3: Stronger Concentration

𝑝𝑗

𝑝−𝑗

𝑝∗



 If the dual is unique, no loss within a neighborhood of 𝑝∗

 Biased random walk towards 𝑝∗

Theorem 3: Stronger concentration
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Optimal Adjustment Size and Price Rigidity

Consider a planner who can set prices, 

but does not know the distribution of agent preferences

 Agents arrive over time, can learn from choices of past agents

 Finite horizon 𝑇

A simple pricing SGD pricing heuristic: 

 Increase price of item 𝑗 by Δ when an agent chooses 𝑗

 Decrease the price of item 𝑗 by Δ at rate proportional to supply



Optimal Adjustment Size and Price Rigidity

 Choice of intermediate Δ balances two sources of loss:

 Smaller Δ implies less loss from price fluctuations

 Larger Δ implies less transient loss during initial learning

 𝑂 𝑇 is the minimal possible loss (Devanur et al. 2019)

Theorem:

The allocative efficiency of SGD pricing with adjustment 

size Δ = Τ1 𝑇 is at least

𝑊𝑇
𝑊𝐿 ≥ 𝑊𝑇

∗ − 𝑂 𝑇



Optimal Adjustment Size and Price Rigidity

Attractive simple pricing heuristic

 Efficiency guarantees

 Algorithm can operate continuously, even if demand changes

 No knowledge required, apart from frequency of changes

Naturally occurring pricing rigidity 

 Prices continuously adjust, unaware of changes in demand

 e.g., do Fed announcements affect demand for Italian food?

 Slow reaction when demand does change

 Algorithm unsure whether it observes new demand patters or noise

 No need for menu costs, rational inattention, etc. 



Conclusion

 Analysis of allocative efficiency in waiting lists

 Simple, natural price adaptation process

 Connection to stochastic gradient decent

 Bounds through Lyapunov functions

 Random fluctuations cause an efficiency loss

 Simple price adaptation policy can do well

 Loss depends on the “adjustment size” – how much one arrival changes 
prices

 Pricing heuristic generates slow response to demand changes


