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Introduction

Why estimating undiscounted MDPs?

@ Standard models with widespread applications
@ Engineering, operations management
@ i.e. people do use them... how do we estimate them?
@ Standard approach in applications: impose calibrated discount factor 3

@ Often impose (3 large but arbitrary

@ Approximate discounted models as § — 1

@ Can be analytically more convenient than their discounted counterparts
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Introduction

This paper

1. Convex duality framework for undiscounted MDPs with i.i.d. shocks
@ Primal problem: payoff system — dynamic choice outcomes (computation)
@ Dual problem: dynamic choice outcomes — payoff system (inversion)

Idea: undiscounted MDP ~ static choice over long-run state-action frequencies

@ Static choice duality goes through



Introduction

This paper

2. Implications

@ lIdentification results: empirical content, identifying restrictions

@ Novel inversion & estimation procedures



Introduction

This paper

2. Implications
@ lIdentification results: empirical content, identifying restrictions
@ Novel inversion & estimation procedures

Not today

@ Axiomatically characterize any undiscounted i.i.d. model

@ Straightforward extensions

@ Mixed i.i.d. models

@ Models where certain actions and/or states are unobserved
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DDC Framework

The discounted model would be

V(x) = Eg r;\;)\([u(a,x) +e(a)+ BT(a,x)- V]

o(a|x) = Prgla € argmax[u(a’, x) +e(a’) + BT(a',x) - V]]
a’€eA
Assumptions.

@ A and X are finite

@ Conditional Independence. Pr(x’, € |x, ¢, a) = Pr(e’|x")Pr(x’|x, a)

@ F is absolutely continuous with full support

@ Accessibility: A strict subset of states absorbing under all possible policies

VYCX3IyeY,xeX\Y,acAst T(x|la,y)>0
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Framework

Optimality

Agents choose a stationary policy 7 : x,e — a. Define

@ The (long-run) expected average payoff

. T
w(m,%0) = liM7 00 757 9, EF.w[u(a, xe) + €(ar)|x0]

@ The (long-run) state-action frequencies
. T
m(a, x|m, x0) = lim7 0 77 En FID o Hae = a,x = x}|xo]

@ The CCP system o(a, x|w) = Pre[m(x,€) = a]

Definition. 7 is optimal if V xp it solves max. w(7|xp)

Definition. w(u) = w(r|xp), p(u) = p(m, x0), o(u) = o(w) for some optimal 7
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Static choice duality

Consider a static discrete choice model: u € RA; o € AA
@ u rationalizes o if o(a) = Pre[a € argmax,/[v(a’) + €(a’)]] Va
@ Define the inclusive value w(u) = EF maxas[u(a) + €(a)]
Theorem (Chiong, Galichon & Shum 2016). TFAE:
©Q v rationalizes o
© u solves max,cgalo - u — w(u)] (= w*(o))
© o solves max,eanlo - v — w*(o)] (= w(u))

Remark. u € Vw*(o) characterizes the identified set
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Duality - intuition

Note that w(u|m, xp) = p(m, x0) - u+ ZX px (x|, x0)EF[e(m(x, €))]

Then can split optimization into nested problems

Let M be the set of all possible state-action frequencies

Let o#(x) € AA be consistent with p at x (i.e. o#(a,x) = p(a, x)/px(x))

maxx w(u|m, xp)
= maXMEM{//' U+ MaXgy inducing H{Z HX(Xlﬂ-v XO)EF[E(T‘-(Xv 6))]}
= maXHEM{I’l’ U+ Zx “X(X) MaX ;. RA— A inducing ok (x) EF[€(7F(E))]}

(Galichon & Salanie 2020) = max,cm{p - u — ZX px(x)w* (o (x))}
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Theorem. Define w*(u) = Zx px(x)w*(o#(x)). TFAE:
Q 1=p(u)
@ L solves max emlp - u — w*(p)] (= w(u))

© u solves max,, cg|Al|x| 1 u—w(u)] (= w(u))

*

w and w* are both convex and C!; w* is strictly convex

Corollary. p=p(u) & I3 keRst. v-u=v -Vw*(p)+kVveM

In words: p identifies the average payoff of each strategy up to a constant
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Duality

Today's focus

Focus on implications for estimation/inversion
i.e. from observed choices (i) to primitives (u)

Remark. p assumed known to the analyst - same as knowing o

Computation of p(u) given u is well studied for case without shocks

The paper has a small result for the case with shocks
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Definition.  is pure if w(x,€) = w(x,¢') V ¢,¢/ € RA

p € My if p = p(m,xp) for some xp and pure
Proposition. My is a linear basis of M

Corollary. p=p(u) & I keRst. v-u=v -Vw*(u)+kVrveM
Miu = M{Vw* () + k

In words: p identifies the average payoff of each pure strategy up to a constant
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Identifying restrictions

Let C represent a set of linear restrictions on u (e.g. C'u=0)
Definition. C identifies u if p(u) = p(v) A C'u=C'v = u=v

if Mlu=Mijv+kANCu=Cv=u=v

Proposition. |Mp| = (JA| — 1) |X| +1
Corollary. TFAE:
1. C identifies u
i) 3 {c!,...,cXI=1} C C s.t. Span{c, ..., cXI=1} N SpanM = {0}
i) 3 v € SpanC N SpanM s.t. Z v(a,x) #0

Mg 1w

has full column rank
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Example: normalizing one payoff at each state

Consider imposing that, for some a, u(a, x) = 0 for every x

Corollary. This identifies u if and only if one can find a state x such that
VY CX\{x}IyeYst T(Y|ay)<1

3 x reachable from any x’ # x under the state-transitions generated by a

Intuition. {u(a,x’) =0: x’ # x} does not span any stationary measure

Remark. Conditions for identification for discounted models are less strong
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Parametric restrictions

Equivalently, can write restrictions in parametric form: 3 unknown 6 s.t. u = C6
Definition. C identifies 0 if u(C0) = u(Cé) =0 =14

Corollary. C identifies 0 if and only if [ MéC 1IM0\><1 } has full column rank

Definition. C just-identifies 6 if C identifies 6 and

VueMnRAX 305t p(co)=p

Corollary. C just-identifies 6 if and only if C identifies 6 and |0] = (|A] — 1) |X]
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Inversion

Take C s.t. C just-identifies 6
Problem. Given p € M N Rlﬁr‘x‘ find the unique 0 s.t. u(CH) = p
Assumption. F is s.t. V a # a’ the density of €,; — €, is bounded above

Two alternative inversion algorithms based on static v.s. dynamic duality

When 6 is over-identified, they suggest alternative two-steps estimators
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Inversion from static duality

1. Exploit static duality to compute Vw™*(u) (compare with CGS 2016)

Proposition. Vw*(p) is the unique u € RIAIX st v x
u(x) € argmax,, pia[o#(x) - v — w(u)] and w(u(x)) =0

u(x) rationalizes o#(x) (in the static sense)

Algorithm. V x gradient descent with constant step size 7 is
U = 4 4 Aok (x) — o] — w(” + ot (x) — o)
where 0(a) = Pg[u"(a) + e(a) = maxy [u"(a") + €(a’)]]

Proposition. For v small enough, u” converges linearly to Vw™* (u)(x)

Proof is standard (can prove that w is smooth)
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Estimation from static duality

Given Vw*(u), get 6 (and k) from M{CO = M{Vw*(u) + k

If C over-identifies 6, solution might not exist
Consider  solving mingcpicl yerlalxl U — CoO|? st. p(u) =p

i.e. minimize distance between p and p(C8) in the space of payoffs

This is equivalent to the linear Constrained least squares
. 2 !y — M
mingcgicl yerlalixl ker lU— CONI° st. Mgu = MyVw*(p) + k

which admits a closed form solution



Estimation

Inversion from dynamic duality

2. Directly compute the unique solution § of max,cpici 1 - CO — w(CO)]
i.e. solve the dual imposing the identifying restrictions u = C6

If 0 is just-identified then p = p(C6)



Estimation

Inversion from dynamic duality

2. Directly compute the unique solution § of max,cpici 1 - CO — w(CO)]
i.e. solve the dual imposing the identifying restrictions u = C6
If 0 is just-identified then p = p(C6)
Algorithm. Gradient descent with constant step size: 6"t = 0" + C’'[u — u(CO")]

Proposition. For v small enough, 6" converges linearly to o



Estimation

Inversion from dynamic duality

2. Directly compute the unique solution § of max,cpici 1 - CO — w(CO)]
i.e. solve the dual imposing the identifying restrictions u = C6

If 0 is just-identified then p = p(C6)

Algorithm. Gradient descent with constant step size: 6"t = 0" + C’'[u — u(CO")]

Proposition. For v small enough, 6" converges linearly to o

Proof idea. w is not smooth.



Estimation

Inversion from dynamic duality

2. Directly compute the unique solution § of max,cpici 1 - CO — w(CO)]
i.e. solve the dual imposing the identifying restrictions u = C6

If 0 is just-identified then p = p(C6)

Algorithm. Gradient descent with constant step size: 6"t = 0" + C’'[u — u(CO")]

Proposition. For v small enough, 6" converges linearly to o
Proof idea. w is not smooth.

1. Pick v so that uyx(C6") remain bounded away from zero



Estimation

Inversion from dynamic duality

2. Directly compute the unique solution § of max,cpici 1 - CO — w(CO)]
i.e. solve the dual imposing the identifying restrictions u = C6

If 0 is just-identified then p = p(C6)

Algorithm. Gradient descent with constant step size: 6"t = 0" + C’'[u — u(CO")]
Proposition. For v small enough, 6" converges linearly to o
Proof idea. w is not smooth.

1. Pick v so that uyx(C6") remain bounded away from zero

2. Then ||p(CO™1) — u(Com)

|, bounded by factor of [|a(CO™1) — o(CO")

|2



Estimation
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2. Directly compute the unique solution § of max,cpici 1 - CO — w(CO)]
i.e. solve the dual imposing the identifying restrictions u = C6

If 0 is just-identified then p = p(C6)

Algorithm. Gradient descent with constant step size: 6"t = 0" + C’'[u — u(CO")]
Proposition. For v small enough, 6" converges linearly to o
Proof idea. w is not smooth.

1. Pick v so that uyx(C6") remain bounded away from zero

2. Then ||p(CO™1) — u(Com)

|, bounded by factor of [|a(CO™1) — o(CO")

B
3. Then smoothness of w yields the progress bounds
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Bregman projection

If 6 is over-identified can show that 6 solves ming Dy« (s, pu(C6))

Dy~ is Bregman divergence associated with w*: Dy« (p,v) = w*(p) — p - Vw*(v)

Example. When F is logit, D, is the Kullback—Leibler divergence

If u(a,x) = vazl W then 6 is Maximum Likelihood estimator
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Conclusion

Independence of Irrelevant Alternatives

Classic lIA for static discrete choice:

Relative frequency of choosing two alternatives is independent of the choice set

Luce (1959). IIA < static choice rationalized by the logit model

For given F, formulate dynamic analogue of IlIA:

Relative distance of any pair of state-action frequencies from the observed one
independent of which other state-action frequencies are available

where distance is Bregman divergence associated with F

Theorem. Dynamic IlA < dynamic choice rationalized by undiscounted MDP
with i.i.d. shocks ~ F



Conclusion

Extensions

The analyst observes a linear function of state-action frequencies

e.g. Mixed models. Heterogeneous agents. u ~ G. Analyst observes iz = [ p(u)dG

Results apply to the estimation of & = [ udG (for known G)



Conclusion

Conclusion

Some results on estimation of undiscounted MDPs

Convenient mapping to static discrete choice

Would be interesting to explore
Estimation exploring cyclic monotonicity (Shi, Shum & Song 2018)
Estimating random coefficient dynamic models from “market level” variation

Beyond Conditional Independence (correlated unobservables)
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