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Why estimating undiscounted MDPs?

Standard models with widespread applications

Engineering, operations management

i.e. people do use them... how do we estimate them?

Standard approach in applications: impose calibrated discount factor β

Often impose β large but arbitrary

Approximate discounted models as β → 1

Can be analytically more convenient than their discounted counterparts
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This paper

1. Convex duality framework for undiscounted MDPs with i.i.d. shocks

Primal problem: payoff system 7→ dynamic choice outcomes (computation)

Dual problem: dynamic choice outcomes 7→ payoff system (inversion)

Idea: undiscounted MDP ~ static choice over long-run state-action frequencies

Static choice duality goes through
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This paper

2. Implications

Identification results: empirical content, identifying restrictions

Novel inversion & estimation procedures

Not today

Axiomatically characterize any undiscounted i.i.d. model

Straightforward extensions

Mixed i.i.d. models

Models where certain actions and/or states are unobserved
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DDC Framework

The discounted model would be

V (x) = EF max
a∈A

[u(a, x) + ε(a) + βT (a, x) · V ]

σ(a|x) = PrF [a ∈ arg max
a′∈A

[u(a′, x) + ε(a′) + βT (a′, x) · V ]]

Assumptions.

A and X are finite

Conditional Independence. Pr(x ′, ε′|x , ε, a) = Pr(ε′|x ′)Pr(x ′|x , a)

F is absolutely continuous with full support

Accessibility : 6 ∃ strict subset of states absorbing under all possible policies

∀ Y ( X ∃ y ∈ Y , x ∈ X \ Y , a ∈ A s.t. T (x |a, y) > 0
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Optimality

Agents choose a stationary policy π : x , ε 7→ a

. Define

The (long-run) expected average payoff

w(π, x0) ≡ limT→∞
1

T +1
∑T

t=0 EF ,π[u(at , xt ) + ε(at )|x0]

The (long-run) state-action frequencies

µ(a, x |π, x0) ≡ limT→∞
1

T +1Eπ,F [
∑T

t=0 1{at = a, xt = x}|x0]

The CCP system σ(a, x |π) = PrF [π(x , ε) = a]

Definition. π is optimal if ∀ x0 it solves maxπ w(π|x0)

Definition. w(u) ≡ w(π|x0), µ(u) ≡ µ(π, x0), σ(u) ≡ σ(π) for some optimal π
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Static choice duality

Consider a static discrete choice model: u ∈ RA; σ ∈ ∆A

u rationalizes σ if σ(a) = PrF [a ∈ arg maxa′ [v(a′) + ε(a′)]] ∀a

Define the inclusive value w(u) = EF maxa[u(a) + ε(a)]

Theorem (Chiong, Galichon & Shum 2016). TFAE:

1 u rationalizes σ

2 u solves maxu∈RA [σ · u − w(u)] (≡ w∗(σ))

3 σ solves maxσ∈∆A[σ · v − w∗(σ)] (= w(u))

Remark. u ∈ ∇w∗(σ) characterizes the identified set
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Duality - intuition

Note that w(u|π, x0) = µ(π, x0) · u +
∑

x µX (x |π, x0)EF [ε(π(x , ε))]

Then can split optimization into nested problems

Let M be the set of all possible state-action frequencies

Let σµ(x) ∈ ∆A be consistent with µ at x (i.e. σµ(a, x) = µ(a, x)/µX (x))

maxπ w(u|π, x0)

= maxµ∈M{µ · u + maxπ inducing µ{
∑

µX (x |π, x0)EF [ε(π(x , ε))]}

= maxµ∈M{µ · u +
∑

x µX (x) maxπ: RA→A inducing σµ(x) EF [ε(π(ε))]}

(Galichon & Salanie 2020) = maxµ∈M{µ · u −
∑

x µX (x)w∗(σµ(x))}
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Duality - statement

Theorem. Define w∗(µ) ≡
∑

x µX (x)w∗(σµ(x)). TFAE:

1 µ = µ(u)

2 µ solves maxµ∈M [µ · u − w∗(µ)] (= w(u))

3 u solves maxu∈R|A||X| [µ · u − w(u)] (= w∗(µ))

w and w∗ are both convex and C1; w∗ is strictly convex

Corollary. µ = µ(u) ⇔ ∃ k ∈ R s.t. ν · u = ν · ∇w∗(µ) + k ∀ ν ∈ M

In words: µ identifies the average payoff of each strategy up to a constant
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Today’s focus

Focus on implications for estimation/inversion

i.e. from observed choices (µ) to primitives (u)

Remark. µ assumed known to the analyst - same as knowing σ

Computation of µ(u) given u is well studied for case without shocks

The paper has a small result for the case with shocks
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Empirical content of aggregate behavior

Definition. π is pure if π(x , ε) = π(x , ε′) ∀ ε, ε′ ∈ RA

µ ∈ M0 if µ = µ(π, x0) for some x0 and pure π

Proposition. M0 is a linear basis of M

Corollary. µ = µ(u) ⇔ ∃ k ∈ R s.t. ν · u = ν · ∇w∗(µ) + k ∀ ν ∈ M0

M′0u = M′0∇w∗(µ) + k

In words: µ identifies the average payoff of each pure strategy up to a constant
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Identifying restrictions

Let C represent a set of linear restrictions on u (e.g. C ′u = 0)

Definition. C identifies u if µ(u) = µ(v) ∧ C ′u = C ′v ⇒ u = v

if M′0u = M′0v + k ∧ C ′u = C ′v ⇒ u = v

Proposition. |M0| = (|A| − 1) |X |+ 1

Corollary. TFAE:

1. C identifies u

2. i) ∃ {c1, ..., c|X |−1} ⊆ C s.t. Span{c1, ..., c|X |−1} ∩ SpanM = {0}

ii) ∃ ν ∈ SpanC ∩ SpanM s.t.
∑

a,x ν(a, x) 6= 0

3.

[
M′0 1|M0|

C ′ 0|C|

]
has full column rank
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Example: normalizing one payoff at each state

Consider imposing that, for some a, u(a, x) = 0 for every x

Corollary. This identifies u if and only if one can find a state x such that

∀Y ⊆ X \ {x} ∃ y ∈ Y s.t. T (Y |a, y) < 1

∃ x reachable from any x ′ 6= x under the state-transitions generated by a

Intuition. {u(a, x ′) = 0 : x ′ 6= x} does not span any stationary measure

Remark. Conditions for identification for discounted models are less strong
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Parametric restrictions

Equivalently, can write restrictions in parametric form: ∃ unknown θ s.t. u = Cθ

Definition. C identifies θ if µ(Cθ) = µ(Cδ)⇒ θ = δ

Corollary. C identifies θ if and only if
[

M′0C 1|M0|×1

]
has full column rank

Definition. C just-identifies θ if C identifies θ and

∀ µ ∈ M ∩ R|A||X |++ ∃ θ s.t. µ(Cθ) = µ

Corollary. C just-identifies θ if and only if C identifies θ and |θ| = (|A| − 1) |X |
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Inversion

Take C s.t. C just-identifies θ

Problem. Given µ ∈ M ∩ R|A||X |++ find the unique θ s.t. µ(Cθ) = µ

Assumption. F is s.t. ∀ a 6= a′ the density of εa′ − εa is bounded above

Two alternative inversion algorithms based on static v.s. dynamic duality

When θ is over-identified, they suggest alternative two-steps estimators
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Inversion from static duality

1. Exploit static duality to compute ∇w∗(µ) (compare with CGS 2016)

Proposition. ∇w∗(µ) is the unique u ∈ R|A||X | s.t. ∀ x

u(x) ∈ arg maxu∈R|A| [σ
µ(x) · u − w(u)] and w(u(x)) = 0

u(x) rationalizes σµ(x) (in the static sense)

Algorithm. ∀ x gradient descent with constant step size γ is

un+1 = un + γ[σµ(x)− σn]− w(un + γ[σµ(x)− σn])

where σn(a) = PF [un(a) + ε(a) = maxa′ [un(a′) + ε(a′)]]

Proposition. For γ small enough, un converges linearly to ∇w∗(µ)(x)

Proof is standard (can prove that w is smooth)
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Estimation from static duality

Given ∇w∗(µ), get θ (and k) from M′0Cθ = M′0∇w∗(µ) + k

If C over-identifies θ, solution might not exist

Consider θ̂ solving minθ∈R|C|,u∈R|A||X| ‖u − Cθ‖2 s.t. µ(u) = µ

i.e. minimize distance between µ and µ(Cθ) in the space of payoffs

This is equivalent to the linear Constrained least squares

minθ∈R|C|,u∈R|A||X|,k∈R ‖u − Cθ‖2 s.t. M′0u = M′0∇w∗(µ) + k

which admits a closed form solution
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Inversion from dynamic duality

2. Directly compute the unique solution θ̂ of maxθ∈R|C| [µ · Cθ − w(Cθ)]

i.e. solve the dual imposing the identifying restrictions u = Cθ

If θ is just-identified then µ = µ(C θ̂)

Algorithm. Gradient descent with constant step size: θn+1 = θn + γC ′[µ− µ(Cθn)]

Proposition. For γ small enough, θn converges linearly to θ̂

Proof idea. w is not smooth.

1. Pick γ so that µX (Cθn) remain bounded away from zero

2. Then
∥∥µ(Cθn+1)− µ(Cθn)

∥∥
2
bounded by factor of

∥∥σ(Cθn+1)− σ(Cθn)
∥∥
2

3. Then smoothness of w yields the progress bounds
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Bregman projection

If θ is over-identified can show that θ̂ solves minθ Dw∗ (µ,µ(Cθ))

Dw∗ is Bregman divergence associated with w∗: Dw∗ (µ, ν) = w∗(µ)− µ · ∇w∗(ν)

Example. When F is logit, Dw∗ is the Kullback–Leibler divergence

If µ(a, x) =
∑N

i=1
1{ai =a,xi =x}

N then θ̂ is Maximum Likelihood estimator
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Further results (sketch)
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Independence of Irrelevant Alternatives

Classic IIA for static discrete choice:

Relative frequency of choosing two alternatives is independent of the choice set

Luce (1959). IIA ⇔ static choice rationalized by the logit model

For given F , formulate dynamic analogue of IIA:

Relative distance of any pair of state-action frequencies from the observed one
independent of which other state-action frequencies are available
where distance is Bregman divergence associated with F

Theorem. Dynamic IIA ⇔ dynamic choice rationalized by undiscounted MDP
with i.i.d. shocks ∼ F
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Extensions

The analyst observes a linear function of state-action frequencies

e.g. Mixed models. Heterogeneous agents. u ∼ G. Analyst observes µ̄ =
´

µ(u)dG

Results apply to the estimation of ū =
´
udG (for known G)
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Conclusion

Some results on estimation of undiscounted MDPs

Convenient mapping to static discrete choice

Would be interesting to explore

Estimation exploring cyclic monotonicity (Shi, Shum & Song 2018)

Estimating random coefficient dynamic models from “market level” variation

Beyond Conditional Independence (correlated unobservables)
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