Introduction	Framework	Duality	Identification	Estimation	Conclusion

Duality and Estimation of Undiscounted MDPs

Nicola Rosaia

Equiprice Seminar

September 23, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Why estimatin	g undiscounted	MDPs?			

- Standard models with widespread applications
 - Engineering, operations management
 - i.e. people do use them... how do we estimate them?
- Standard approach in applications: impose calibrated discount factor β
 - Often impose β large but arbitrary
- Approximate discounted models as $\beta \rightarrow 1$
 - Can be analytically more convenient than their discounted counterparts

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction	Framework	Duality	Identification	Estimation	Conclusion
This paper					

- 1. Convex duality framework for undiscounted MDPs with i.i.d. shocks
 - Primal problem: payoff system → dynamic choice outcomes (computation)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

● Dual problem: dynamic choice outcomes → payoff system (inversion)

Introduction	Framework	Duality	Identification	Estimation	Conclusion
This paper					

- 1. Convex duality framework for undiscounted MDPs with i.i.d. shocks
 - Primal problem: payoff system → dynamic choice outcomes (computation)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

● Dual problem: dynamic choice outcomes → payoff system (inversion)

Idea: undiscounted MDP \sim static choice over long-run state-action frequencies

Static choice duality goes through

Introduction	Framework	Duality	Identification	Estimation	Conclusion
This paper					

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- 2. Implications
 - Identification results: empirical content, identifying restrictions
 - Novel inversion & estimation procedures

Introduction	Framework	Duality	Identification	Estimation	Conclusion
This paper					

2. Implications

- Identification results: empirical content, identifying restrictions
- Novel inversion & estimation procedures

Not today

- Axiomatically characterize any undiscounted i.i.d. model
- Straightforward extensions
 - Mixed i.i.d. models
 - Models where certain actions and/or states are unobserved

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Outline					

2 Duality

Identification

4 Estimation

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Framework

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Framework	Duality	Identification	Estimation	Conclusion
DDC Frame	work				

The discounted model would be

$$V(x) = \mathsf{E}_F \max_{a \in A} [u(a, x) + \epsilon(a) + \beta T(a, x) \cdot V]$$
$$\sigma(a|x) = \mathsf{Pr}_F[a \in \arg\max_{a' \in A} [u(a', x) + \epsilon(a') + \beta T(a', x) \cdot V]]$$

Assumptions.

- A and X are finite
- Conditional Independence. $Pr(x', \epsilon'|x, \epsilon, a) = Pr(\epsilon'|x')Pr(x'|x, a)$
- F is absolutely continuous with full support
- Accessibility: *A* strict subset of states absorbing under all possible policies

$$\forall Y \subsetneq X \exists y \in Y, x \in X \setminus Y, a \in A \text{ s.t. } T(x|a, y) > 0$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Optimality					

Agents choose a *stationary policy* $\boldsymbol{\pi}$: $x, \epsilon \mapsto a$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Optimality					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Agents choose a *stationary policy* π : $x, \epsilon \mapsto a$. Define

• The (long-run) expected average payoff $w(\pi, x_0) \equiv \lim_{T \to \infty} \frac{1}{T+1} \sum_{t=0}^{T} \mathsf{E}_{F,\pi}[u(a_t, x_t) + \epsilon(a_t)|x_0]$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Optimality					

Agents choose a *stationary policy* $\pi : x, \epsilon \mapsto a$. Define

- The (long-run) expected average payoff $w(\pi, x_0) \equiv \lim_{T \to \infty} \frac{1}{T+1} \sum_{t=0}^{T} \mathsf{E}_{F,\pi}[u(a_t, x_t) + \epsilon(a_t)|x_0]$
- The (long-run) state-action frequencies $\mu(a, x | \pi, x_0) \equiv \lim_{T \to \infty} \frac{1}{T+1} \mathsf{E}_{\pi, F} [\sum_{t=0}^{T} \mathbb{1}\{a_t = a, x_t = x\} | x_0]$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Optimality					

Agents choose a *stationary policy* π : $x, \epsilon \mapsto a$. Define

- The (long-run) expected average payoff $w(\pi, x_0) \equiv \lim_{T \to \infty} \frac{1}{T+1} \sum_{t=0}^{T} \mathsf{E}_{F,\pi}[u(a_t, x_t) + \epsilon(a_t)|x_0]$
- The (long-run) state-action frequencies $\mu(a, x | \pi, x_0) \equiv \lim_{T \to \infty} \frac{1}{T+1} \mathsf{E}_{\pi, F} [\sum_{t=0}^{T} 1\{a_t = a, x_t = x\} | x_0]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• The CCP system $\sigma(a, x | \pi) = \Pr_F[\pi(x, \epsilon) = a]$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Optimality					

Agents choose a *stationary policy* π : $x, \epsilon \mapsto a$. Define

- The (long-run) expected average payoff $w(\pi, x_0) \equiv \lim_{T \to \infty} \frac{1}{T+1} \sum_{t=0}^{T} \mathsf{E}_{F,\pi}[u(a_t, x_t) + \epsilon(a_t)|x_0]$
- The (long-run) state-action frequencies
 μ(a, x|π, x₀) ≡ lim_{T→∞} 1/(T+1) E_{π,F}[∑_{t=0}^T 1{a_t = a, x_t = x}|x₀]

 The CCP system σ(a, x|π) = Pr_F[π(x, ε) = a]

Definition. π is optimal if $\forall x_0$ it solves $\max_{\pi} w(\pi | x_0)$

Definition. $w(u) \equiv w(\pi|x_0), \ \mu(u) \equiv \mu(\pi, x_0), \ \sigma(u) \equiv \sigma(\pi)$ for some optimal π

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Duality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Static choice o	duality				

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Static choice	duality				

• *u* rationalizes
$$\sigma$$
 if $\sigma(a) = \Pr_F[a \in \arg \max_{a'}[v(a') + \epsilon(a')]] \forall a$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Static choice	duality				

- *u* rationalizes σ if $\sigma(a) = \Pr_F[a \in \arg \max_{a'}[v(a') + \epsilon(a')]] \forall a$
- Define the inclusive value $w(u) = E_F \max_a [u(a) + \epsilon(a)]$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Static choice	duality				

- *u* rationalizes σ if $\sigma(a) = \Pr_F[a \in \arg \max_{a'}[v(a') + \epsilon(a')]] \forall a$
- Define the inclusive value $w(u) = E_F \max_a [u(a) + \epsilon(a)]$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Static choice	duality				

Consider a static discrete choice model: $u \in \mathbb{R}^A$; $\sigma \in \Delta A$

- *u* rationalizes σ if $\sigma(a) = \Pr_F[a \in \arg \max_{a'}[v(a') + \epsilon(a')]] \forall a$
- Define the inclusive value w(u) = E_F max_a[u(a) + e(a)]

Theorem (Chiong, Galichon & Shum 2016). TFAE:

1
$$u$$
 rationalizes σ

2 *u* solves $\max_{u \in \mathbb{R}^A} [\sigma \cdot u - w(u)] (\equiv w^*(\sigma))$

$$o solves \max_{\sigma \in \Delta A} [\sigma \cdot v - w^*(\sigma)] (= w(u))$$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Static choice	duality				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Consider a static discrete choice model: $u \in \mathbb{R}^{A}$; $\sigma \in \Delta A$

- *u* rationalizes σ if $\sigma(a) = \Pr_F[a \in \arg \max_{a'}[v(a') + \epsilon(a')]] \forall a$
- Define the inclusive value w(u) = E_F max_a[u(a) + e(a)]

Theorem (Chiong, Galichon & Shum 2016). TFAE:

1
$$u$$
 rationalizes σ

- 2 *u* solves $\max_{u \in \mathbb{R}^A} [\sigma \cdot u w(u)] (\equiv w^*(\sigma))$
- 3 σ solves $\max_{\sigma \in \Delta A} [\sigma \cdot v w^*(\sigma)] (= w(u))$

Remark. $u \in \nabla w^*(\sigma)$ characterizes the identified set

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Duality - intuit	tion				

・ロト ・四ト ・ヨト ・ヨト ・日・

Note that
$$w(u|\pi, x_0) = \mu(\pi, x_0) \cdot u + \sum_x \mu_X(x|\pi, x_0) \mathsf{E}_{\mathsf{F}}[\epsilon(\pi(x, \epsilon))]$$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Duality - intui	tion				

Note that
$$\boldsymbol{w}(\boldsymbol{u}|\pi, x_0) = \mu(\pi, x_0) \cdot \boldsymbol{u} + \sum_{x} \mu_X(x|\pi, x_0) \mathsf{E}_{\mathsf{F}}[\epsilon(\pi(x, \epsilon))]$$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Duality - inti	uition				

Note that
$$w(u|\pi, x_0) = \mu(\pi, x_0) \cdot u + \sum_{x} \mu_X(x|\pi, x_0) \mathsf{E}_F[\epsilon(\pi(x, \epsilon))]$$

Let M be the set of all possible state-action frequencies

Let $\sigma^{\mu}(x) \in \Delta A$ be consistent with μ at x (i.e. $\sigma^{\mu}(a,x) = \mu(a,x)/\mu_X(x)$)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Duality - int	uition				

Note that
$$\boldsymbol{w}(\boldsymbol{u}|\pi, x_0) = \mu(\pi, x_0) \cdot \boldsymbol{u} + \sum_{x} \mu_X(x|\pi, x_0) \mathsf{E}_{\mathsf{F}}[\epsilon(\pi(x, \epsilon))]$$

Let M be the set of all possible state-action frequencies

Let $\sigma^{\mu}(x) \in \Delta A$ be consistent with μ at x (i.e. $\sigma^{\mu}(a,x) = \mu(a,x)/\mu_X(x))$

 $\max_{\pi} w(u|\pi, x_0)$

 $= \max_{\boldsymbol{\mu} \in M} \{ \boldsymbol{\mu} \cdot \boldsymbol{u} + \max_{\boldsymbol{\pi} \text{ inducing } \boldsymbol{\mu}} \{ \sum \mu_X(x | \boldsymbol{\pi}, x_0) \mathsf{E}_{\mathsf{F}}[\epsilon(\boldsymbol{\pi}(x, \epsilon))] \}$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Duality - int	uition				

Note that
$$\boldsymbol{w}(\boldsymbol{u}|\pi, x_0) = \mu(\pi, x_0) \cdot \boldsymbol{u} + \sum_{x} \mu_X(x|\pi, x_0) \mathsf{E}_{\mathsf{F}}[\epsilon(\pi(x, \epsilon))]$$

Let M be the set of all possible state-action frequencies

Let $\sigma^{\mu}(x)\in \Delta A$ be consistent with μ at x (i.e. $\sigma^{\mu}(a,x)=\mu(a,x)/\mu_{X}(x))$

 $\max_{\pi} w(u|\pi, x_0)$

 $= \max_{\mu \in M} \{ \mu \cdot u + \max_{\pi \text{ inducing } \mu} \{ \sum_{\chi} \mu_X(x | \pi, x_0) \mathsf{E}_F[\epsilon(\pi(x, \epsilon))] \}$ $= \max_{\mu \in M} \{ \mu \cdot u + \sum_{\chi} \mu_X(x) \max_{\pi : \mathbb{R}^A \to A \text{ inducing } \sigma^\mu(x)} \mathsf{E}_F[\epsilon(\pi(\epsilon))] \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Duality - int	uition				

Note that
$$\boldsymbol{w}(\boldsymbol{u}|\pi,x_0) = \boldsymbol{\mu}(\pi,x_0)\cdot\boldsymbol{u} + \sum_{x} \boldsymbol{\mu}_X(x|\pi,x_0)\mathsf{E}_{\mathsf{F}}[\epsilon(\pi(x,\epsilon))]$$

Let M be the set of all possible state-action frequencies

Let $\sigma^{\mu}(x)\in \Delta A$ be consistent with μ at x (i.e. $\sigma^{\mu}(a,x)=\mu(a,x)/\mu_X(x))$

 $\max_{\pi} \boldsymbol{w}(\boldsymbol{u}|\pi, x_0)$

 $= \max_{\mu \in M} \{ \mu \cdot \boldsymbol{u} + \max_{\pi \text{ inducing } \mu} \{ \sum_{\lambda} \mu_X(x|\pi, x_0) \mathsf{E}_F[\epsilon(\pi(x, \epsilon))] \}$ $= \max_{\mu \in M} \{ \mu \cdot \boldsymbol{u} + \sum_{x} \mu_X(x) \max_{\pi: \mathbb{R}^A \to A \text{ inducing } \sigma^\mu(x)} \mathsf{E}_F[\epsilon(\pi(\epsilon))] \}$ $(\text{Galichon \& Salanie 2020}) = \max_{\mu \in M} \{ \mu \cdot \boldsymbol{u} - \sum_{x} \mu_X(x) w^*(\sigma^\mu(x)) \}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Duality - state	ement				

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで

Theorem. Define $w^*(\mu) \equiv \sum_x \mu_X(x) w^*(\sigma^{\mu}(x))$. TFAE:

 $\bigcirc \mu = \mu(u)$

2
$$\mu$$
 solves max $_{\mu \in M}[\mu \cdot u - w^*(\mu)] (= w(u))$

3
$$\boldsymbol{u}$$
 solves max $_{\boldsymbol{u}\in\mathbb{R}^{|A||X|}}[\boldsymbol{\mu}\cdot\boldsymbol{u}-\boldsymbol{w}(\boldsymbol{u})] \;(=\boldsymbol{w}^*(\boldsymbol{\mu}))$

 \boldsymbol{w} and \boldsymbol{w}^* are both convex and C^1 ; \boldsymbol{w}^* is strictly convex

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Duality - state	ement				

Theorem. Define $w^*(\mu) \equiv \sum_x \mu_X(x) w^*(\sigma^{\mu}(x))$. TFAE:

 $\bigcirc \mu = \mu(u)$

2
$$\mu$$
 solves $\max_{\mu \in M} [\mu \cdot u - w^*(\mu)] (= w(u))$

3
$$\boldsymbol{u}$$
 solves max $_{\boldsymbol{u}\in\mathbb{R}^{|A||X|}}[\boldsymbol{\mu}\cdot\boldsymbol{u}-\boldsymbol{w}(\boldsymbol{u})] \;(=\boldsymbol{w}^*(\boldsymbol{\mu}))$

 \boldsymbol{w} and \boldsymbol{w}^* are both convex and C^1 ; \boldsymbol{w}^* is strictly convex

 $\textbf{Corollary.} \ \mu = \mu(\textbf{\textit{u}}) \Leftrightarrow \exists \ k \in \mathbb{R} \text{ s.t. } \nu \cdot \textbf{\textit{u}} = \nu \cdot \nabla \textbf{\textit{w}}^*(\mu) + k \ \forall \ \nu \in M$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Duality - state	ement				

Theorem. Define $w^*(\mu) \equiv \sum_x \mu_X(x) w^*(\sigma^{\mu}(x))$. TFAE:

 $\mathbf{0} \quad \boldsymbol{\mu} = \boldsymbol{\mu}(\boldsymbol{u})$

2
$$\mu$$
 solves max $_{\mu \in M}[\mu \cdot u - w^*(\mu)] (= w(u))$

3
$$\boldsymbol{u}$$
 solves max $_{\boldsymbol{u}\in\mathbb{R}^{|A||X|}}[\boldsymbol{\mu}\cdot\boldsymbol{u}-\boldsymbol{w}(\boldsymbol{u})] \;(=\boldsymbol{w}^*(\boldsymbol{\mu}))$

 \boldsymbol{w} and \boldsymbol{w}^* are both convex and C^1 ; \boldsymbol{w}^* is strictly convex

Corollary. $\mu = \mu(u) \Leftrightarrow \exists \ k \in \mathbb{R} \text{ s.t. } \nu \cdot u = \nu \cdot \nabla w^*(\mu) + k \ \forall \ \nu \in M$

In words: μ identifies the average payoff of each strategy up to a constant

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Today's focus					

Focus on implications for estimation/inversion

i.e. from observed choices (μ) to primitives (u)

Remark. μ assumed known to the analyst - same as knowing σ

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Today's focus					

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Focus on implications for estimation/inversion

i.e. from observed choices (μ) to primitives (u)

Remark. μ assumed known to the analyst - same as knowing σ

Computation of $\mu(u)$ given u is well studied for case without shocks

The paper has a small result for the case with shocks

Identification of payoffs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Empirical co	ontent of aggreg	gate behavior			

Definition. π is *pure* if $\pi(x, \epsilon) = \pi(x, \epsilon') \ \forall \ \epsilon, \epsilon' \in \mathbb{R}^A$

 $\mu \in M_0$ if $\mu = \mu(\pi, x_0)$ for some x_0 and pure π

Proposition. M_0 is a linear basis of M

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Empirical co	ontent of aggreg	gate behavior			

Definition. π is *pure* if $\pi(x, \epsilon) = \pi(x, \epsilon') \ \forall \ \epsilon, \epsilon' \in \mathbb{R}^A$

$$\mu \in M_0$$
 if $\mu = \mu(\pi, x_0)$ for some x_0 and pure π

Proposition. M_0 is a linear basis of M

Corollary. $\mu = \mu(\mathbf{u}) \Leftrightarrow \exists k \in \mathbb{R} \text{ s.t. } \mathbf{\nu} \cdot \mathbf{u} = \mathbf{\nu} \cdot \nabla \mathbf{w}^*(\mu) + k \forall \nu \in M_0$

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Empirical co	ntent of aggree	ate behavior			

Definition. π is *pure* if $\pi(x, \epsilon) = \pi(x, \epsilon') \ \forall \ \epsilon, \epsilon' \in \mathbb{R}^A$

$$\mu \in M_0$$
 if $\mu = \mu(\pi, x_0)$ for some x_0 and pure π

Proposition. M_0 is a linear basis of M

Corollary. $\mu = \mu(u) \Leftrightarrow \exists k \in \mathbb{R} \text{ s.t. } \nu \cdot u = \nu \cdot \nabla w^*(\mu) + k \forall \nu \in M_0$ $M'_0 u = M'_0 \nabla w^*(\mu) + k$
Introduction	Framework	Duality	Identification	Estimation	Conclusion
Empirical co	ntent of aggree	ate behavior			

Definition. π is *pure* if $\pi(x, \epsilon) = \pi(x, \epsilon') \ \forall \ \epsilon, \epsilon' \in \mathbb{R}^A$

$$\mu \in M_0$$
 if $\mu = \mu(\pi, x_0)$ for some x_0 and pure π

Proposition. M_0 is a linear basis of M

Corollary.
$$\mu = \mu(\boldsymbol{u}) \Leftrightarrow \exists k \in \mathbb{R} \text{ s.t. } \nu \cdot \boldsymbol{u} = \nu \cdot \nabla \boldsymbol{w}^*(\mu) + k \forall \nu \in M_0$$
$$M'_0 \boldsymbol{u} = M'_0 \nabla \boldsymbol{w}^*(\mu) + k$$

In words: μ identifies the average payoff of each pure strategy up to a constant

▲□▶▲□▶★≣▶★≣▶ = ● のへで

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Identifying res	trictions				

Let C represent a set of linear restrictions on u (e.g. C'u = 0)

Definition. *C* identifies *u* if $\mu(u) = \mu(v) \wedge C'u = C'v \Rightarrow u = v$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Identifying re	strictions				

Let C represent a set of linear restrictions on \boldsymbol{u} (e.g. $C'\boldsymbol{u}=0$)

Definition. *C* identifies *u* if $\mu(u) = \mu(v) \wedge C'u = C'v \Rightarrow u = v$

$$\text{if } M_0' \boldsymbol{u} = M_0' \boldsymbol{v} + k \wedge C' \boldsymbol{u} = C' \boldsymbol{v} \Rightarrow \boldsymbol{u} = \boldsymbol{v}$$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Identifying re	strictions				

Let C represent a set of linear restrictions on \boldsymbol{u} (e.g. $C'\boldsymbol{u}=0$)

Definition. *C* identifies *u* if $\mu(u) = \mu(v) \wedge C'u = C'v \Rightarrow u = v$

if
$$M_0' u = M_0' v + k \land C' u = C' v \Rightarrow u = v$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = - のへぐ

Proposition. $|M_0| = (|A| - 1) |X| + 1$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Identifying re	strictions				

Let C represent a set of linear restrictions on \boldsymbol{u} (e.g. $C'\boldsymbol{u} = 0$)

Definition. *C* identifies *u* if $\mu(u) = \mu(v) \land C'u = C'v \Rightarrow u = v$

if
$$M_0' u = M_0' v + k \land C' u = C' v \Rightarrow u = v$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Proposition. $|M_0| = (|A| - 1)|X| + 1$

Corollary. TFAE:

1. C identifies u

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Identifying re	strictions				

Let C represent a set of linear restrictions on \boldsymbol{u} (e.g. $C'\boldsymbol{u} = 0$)

Definition. *C* identifies *u* if $\mu(u) = \mu(v) \wedge C'u = C'v \Rightarrow u = v$

if
$$M_0' u = M_0' v + k \land C' u = C' v \Rightarrow u = v$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Proposition. $|M_0| = (|A| - 1) |X| + 1$

Corollary. TFAE:

- 1. C identifies u
- 2. i) ∃ { c^1 , ..., $c^{|X|-1}$ } ⊆ C s.t. Span{ c^1 , ..., $c^{|X|-1}$ } ∩ SpanM = {0} ii) ∃ ν ∈ SpanC ∩ SpanM s.t. $\sum_{a,x} \nu(a, x) \neq 0$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Identifying re	strictions				

Let C represent a set of linear restrictions on \boldsymbol{u} (e.g. $C'\boldsymbol{u} = 0$)

Definition. *C* identifies *u* if $\mu(u) = \mu(v) \wedge C'u = C'v \Rightarrow u = v$

if
$$M_0' u = M_0' v + k \land C' u = C' v \Rightarrow u = v$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Proposition. $|M_0| = (|A| - 1)|X| + 1$

Corollary. TFAE:

1. C identifies u

2. i)
$$\exists \{c^1, ..., c^{|X|-1}\} \subseteq C$$
 s.t. $\operatorname{Span}\{c^1, ..., c^{|X|-1}\} \cap \operatorname{Span}M = \{0\}$
ii) $\exists \nu \in \operatorname{Span}C \cap \operatorname{Span}M$ s.t. $\sum_{a,x} \nu(a, x) \neq 0$
3. $\begin{bmatrix} M'_0 & 1_{|M_0|} \\ C' & 0_{|C|} \end{bmatrix}$ has full column rank

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Example: no	rmalizing one p	payoff at each	n state		

・ロト・日本・ヨト・ヨー うへの

Consider imposing that, for some *a*, u(a, x) = 0 for every x

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Example: nor	malizing one i	pavoff at each	state		

Consider imposing that, for some *a*, u(a, x) = 0 for every *x*

Corollary. This identifies u if and only if one can find a state x such that

 $\forall Y \subseteq X \setminus \{x\} \exists y \in Y \text{ s.t. } T(Y|a, y) < 1$

 $\exists x \text{ reachable from any } x' \neq x \text{ under the state-transitions generated by } a$ Intuition. { $u(a, x') = 0 : x' \neq x$ } does not span any stationary measure

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Example: nor	malizing one i	pavoff at each	state		

Consider imposing that, for some *a*, u(a, x) = 0 for every *x*

Corollary. This identifies u if and only if one can find a state x such that

 $\forall Y \subseteq X \setminus \{x\} \exists y \in Y \text{ s.t. } T(Y|a, y) < 1$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

∃ x reachable from any $x' \neq x$ under the state-transitions generated by a Intuition. {u(a, x') = 0 : $x' \neq x$ } does not span any stationary measure Remark. Conditions for identification for discounted models are less strong

Estimation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Parametric res	strictions				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition. *C identifies* θ if $\mu(C\theta) = \mu(C\delta) \Rightarrow \theta = \delta$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Parametric res	trictions				

Definition. *C* identifies θ if $\mu(C\theta) = \mu(C\delta) \Rightarrow \theta = \delta$

Corollary. *C* identifies θ if and only if $\begin{bmatrix} M'_0 C & \mathbf{1}_{|M_0| \times 1} \end{bmatrix}$ has full column rank

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Parametric res	trictions				

Definition. *C identifies* θ if $\mu(C\theta) = \mu(C\delta) \Rightarrow \theta = \delta$

Corollary. C identifies θ if and only if $\begin{bmatrix} M_0'C & \mathbf{1}_{|M_0| \times 1} \end{bmatrix}$ has full column rank

Definition. *C* just-identifies θ if *C* identifies θ and

$$orall \mu \in M \cap \mathbb{R}^{|A||X|}_{++} \exists heta$$
 s.t. $\mu(C heta) = \mu$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Parametric res	trictions				

Definition. *C identifies* θ if $\mu(C\theta) = \mu(C\delta) \Rightarrow \theta = \delta$

Corollary. *C* identifies θ if and only if $\begin{bmatrix} M'_0 C & \mathbf{1}_{|M_0| \times 1} \end{bmatrix}$ has full column rank

Definition. *C* just-identifies θ if *C* identifies θ and

$$orall \ \mu \in M \cap \mathbb{R}_{++}^{|A||X|} \ \exists \ heta \ \mathsf{s.t.} \ \mu(extsf{C} heta) = \mu$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Corollary. C just-identifies heta if and only if C identifies heta and | heta| = (|A| - 1)|X|

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion					

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Take C s.t. C just-identifies θ Problem. Given $\mu \in M \cap \mathbb{R}_{++}^{|A||X|}$ find the unique θ s.t. $\mu(C\theta) = \mu$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion					

Take *C* s.t. *C* just-identifies θ **Problem.** Given $\mu \in M \cap \mathbb{R}_{++}^{|A||X|}$ find the unique θ s.t. $\mu(C\theta) = \mu$ **Assumption.** *F* is s.t. $\forall a \neq a'$ the density of $\epsilon_{a'} - \epsilon_a$ is bounded above

Two alternative inversion algorithms based on static v.s. dynamic duality

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion					

Take *C* s.t. *C* just-identifies θ **Problem**. Given $\mu \in M \cap \mathbb{R}_{++}^{|A||X|}$ find the unique θ s.t. $\mu(C\theta) = \mu$ **Assumption**. *F* is s.t. $\forall a \neq a'$ the density of $\epsilon_{a'} - \epsilon_a$ is bounded above Two alternative inversion algorithms based on static v.s. dynamic duality When θ is over-identified, they suggest alternative two-steps estimators

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion from	static duality				

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

1. Exploit static duality to compute $abla {m w}^*(\mu)$ (compare with CGS 2016)

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion from	static duality				

Proposition. $\nabla w^*(\mu)$ is the unique $u \in \mathbb{R}^{|A||X|}$ s.t. $\forall x$

 $oldsymbol{u}(x)\in {
m arg\,max}_{u\in \mathbb{R}^{|A|}}[oldsymbol{\sigma}^{oldsymbol{\mu}}(x)\cdot u-w(u)] ext{ and } w(oldsymbol{u}(x))=0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion from	static duality				

Proposition. $\nabla w^*(\mu)$ is the unique $u \in \mathbb{R}^{|A||X|}$ s.t. $\forall x$

 $u(x) \in \arg \max_{u \in \mathbb{R}^{|A|}} [\sigma^{\mu}(x) \cdot u - w(u)] \text{ and } w(u(x)) = 0$ $u(x) \text{ rationalizes } \sigma^{\mu}(x) \text{ (in the static sense)}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion from	static duality				

Proposition.
$$\nabla w^*(\mu)$$
 is the unique $u \in \mathbb{R}^{|A||X|}$ s.t. $\forall x$
 $u(x) \in \arg \max_{u \in \mathbb{R}^{|A|}} [\sigma^{\mu}(x) \cdot u - w(u)]$ and $w(u(x)) = 0$
 $u(x)$ rationalizes $\sigma^{\mu}(x)$ (in the static sense)

Algorithm. $\forall x$ gradient descent with constant step size γ is $u^{n+1} = u^n + \gamma[\sigma^{\mu}(x) - \sigma^n] - w(u^n + \gamma[\sigma^{\mu}(x) - \sigma^n])$ where $\sigma^n(a) = P_F[u^n(a) + \epsilon(a) = \max_{a'}[u^n(a') + \epsilon(a')]]$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Proposition. $\nabla w^*(\mu)$ is the unique $u \in \mathbb{R}^{|A||X|}$ s.t. $\forall x$ $u(x) \in \arg \max_{u \in \mathbb{R}^{|A|}} [\sigma^{\mu}(x) \cdot u - w(u)]$ and w(u(x)) = 0u(x) rationalizes $\sigma^{\mu}(x)$ (in the static sense)

Algorithm. $\forall x$ gradient descent with constant step size γ is $u^{n+1} = u^n + \gamma[\sigma^{\mu}(x) - \sigma^n] - w(u^n + \gamma[\sigma^{\mu}(x) - \sigma^n])$ where $\sigma^n(a) = P_F[u^n(a) + \epsilon(a) = \max_{a'}[u^n(a') + \epsilon(a')]]$

Proposition. For γ small enough, u^n converges linearly to $\nabla w^*(\mu)(x)$ Proof is standard (can prove that w is smooth)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Estimation fro	m static duality				

・ロト・日本・ヨト・ヨー うへの

Given $\nabla w^*(\mu)$, get θ (and k) from $M'_0 C \theta = M'_0 \nabla w^*(\mu) + k$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Estimation fro	m static duality				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Given $\nabla w^*(\mu)$, get θ (and k) from $M_0' C \theta = M_0' \nabla w^*(\mu) + k$

If C over-identifies θ , solution might not exist

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Estimation fro	m static duality				

Given $\nabla \boldsymbol{w}^*(\boldsymbol{\mu})$, get θ (and k) from $M_0' C \theta = M_0' \nabla \boldsymbol{w}^*(\boldsymbol{\mu}) + k$

If C over-identifies θ , solution might not exist

 $\text{Consider } \hat{\theta} \text{ solving } \min_{\theta \in \mathbb{R}^{|\mathcal{L}|}, \textbf{\textit{u}} \in \mathbb{R}^{|\mathcal{A}||X|}} \|\textbf{\textit{u}} - \mathcal{C}\theta\|^2 \text{ s.t. } \mu(\textbf{\textit{u}}) = \mu$

i.e. minimize distance between μ and $\mu(C\theta)$ in the space of payoffs

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Estimation fro	m static duality				

Given $\nabla \boldsymbol{w}^*(\boldsymbol{\mu})$, get θ (and k) from $M'_0 C \theta = M'_0 \nabla \boldsymbol{w}^*(\boldsymbol{\mu}) + k$

If C over-identifies θ , solution might not exist

 $\text{Consider } \hat{\theta} \text{ solving } \min_{\theta \in \mathbb{R}^{|\mathcal{L}|}, \textbf{\textit{u}} \in \mathbb{R}^{|\mathcal{A}| |X|}} \| \textbf{\textit{u}} - \mathcal{C} \theta \|^2 \text{ s.t. } \boldsymbol{\mu}(\textbf{\textit{u}}) = \boldsymbol{\mu}$

i.e. minimize distance between μ and $\mu(C\theta)$ in the space of payoffs

This is equivalent to the linear Constrained least squares

$$\begin{split} \min_{\theta \in \mathbb{R}^{|\mathcal{C}|}, \boldsymbol{u} \in \mathbb{R}^{|\mathcal{A}||X|}, k \in \mathbb{R}} \|\boldsymbol{u} - \mathcal{C}\theta\|^2 \text{ s.t. } M_0' \boldsymbol{u} = M_0' \nabla \boldsymbol{w}^*(\boldsymbol{\mu}) + k \end{split}$$
 which admits a closed form solution

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion fron	n dynamic dua	ality			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. Directly compute the unique solution $\hat{\theta}$ of $\max_{\theta \in \mathbb{R}^{|C|}} [\mu \cdot C\theta - w(C\theta)]$

i.e. solve the dual imposing the identifying restrictions $\pmb{u}=\pmb{C}\pmb{ heta}$

If heta is just-identified then $\mu=\mu(C\hat{ heta})$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion fro	om dynamic dua	lity			

i.e. solve the dual imposing the identifying restrictions $u = C\theta$ If θ is just-identified then $\mu = \mu(C\hat{\theta})$

Algorithm. Gradient descent with constant step size: $\theta^{n+1} = \theta^n + \gamma C' [\mu - \mu(C\theta^n)]$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Proposition. For γ small enough, θ^n converges linearly to $\hat{\theta}$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion fro	om dynamic dua	ality			

Directly compute the unique solution θ̂ of max_{θ∈ℝ|C|} [μ · Cθ - w(Cθ)]
 i.e. solve the dual imposing the identifying restrictions u = Cθ

If θ is just-identified then $\mu = \mu(C\hat{\theta})$

Algorithm. Gradient descent with constant step size: $\theta^{n+1} = \theta^n + \gamma C' [\mu - \mu(C\theta^n)]$ Proposition. For γ small enough, θ^n converges linearly to $\hat{\theta}$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Proof idea. w is not smooth.

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion fro	om dynamic dua	ality			

i.e. solve the dual imposing the identifying restrictions $u = C\theta$ If θ is just-identified then $\mu = \mu(C\hat{\theta})$

Algorithm. Gradient descent with constant step size: $\theta^{n+1} = \theta^n + \gamma C' [\mu - \mu(C\theta^n)]$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Proposition. For γ small enough, θ^n converges linearly to $\hat{\theta}$

Proof idea. w is not smooth.

1. Pick γ so that $\mu_X(C\theta^n)$ remain bounded away from zero

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion fro	om dynamic dua	lity			

i.e. solve the dual imposing the identifying restrictions $u = C\theta$ If θ is just-identified then $\mu = \mu(C\hat{\theta})$

Algorithm. Gradient descent with constant step size: $\theta^{n+1} = \theta^n + \gamma C'[\mu - \mu(C\theta^n)]$

Proposition. For γ small enough, θ^n converges linearly to $\hat{\theta}$

Proof idea. w is not smooth.

- 1. Pick γ so that $\mu_{\chi}(C\theta^n)$ remain bounded away from zero
- 2. Then $\left\|\mu(C\theta^{n+1})-\mu(C\theta^n)\right\|_2$ bounded by factor of $\left\|\sigma(C\theta^{n+1})-\sigma(C\theta^n)\right\|_2$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Inversion fro	m dynamic dua	ality			

i.e. solve the dual imposing the identifying restrictions $u = C\theta$ If θ is just-identified then $\mu = \mu(C\hat{\theta})$

Algorithm. Gradient descent with constant step size: $\theta^{n+1} = \theta^n + \gamma C'[\mu - \mu(C\theta^n)]$

Proposition. For γ small enough, θ^n converges linearly to $\hat{\theta}$

Proof idea. w is not smooth.

- 1. Pick γ so that $\mu_{\chi}(C\theta^n)$ remain bounded away from zero
- 2. Then $\|\mu(C\theta^{n+1}) \mu(C\theta^n)\|_2$ bounded by factor of $\|\sigma(C\theta^{n+1}) \sigma(C\theta^n)\|_2$

3. Then smoothness of w yields the progress bounds

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Bregman proj	jection				

If θ is over-identified can show that $\hat{\theta}$ solves $\min_{\theta} D_{w^*}(\mu, \mu(C\theta))$

 D_{w^*} is **Bregman divergence** associated with w^* : $D_{w^*}(\mu, \nu) = w^*(\mu) - \mu \cdot \nabla w^*(\nu)$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Bregman pro	ojection				

If θ is over-identified can show that $\hat{\theta}$ solves $\min_{\theta} D_{\mathbf{w}^*}(\mu, \mu(C\theta))$ $D_{\mathbf{w}^*}$ is **Bregman divergence** associated with \mathbf{w}^* : $D_{\mathbf{w}^*}(\mu, \nu) = \mathbf{w}^*(\mu) - \mu \cdot \nabla \mathbf{w}^*(\nu)$

Example. When F is logit, D_{w^*} is the Kullback–Leibler divergence

If $\mu(a,x) = \sum_{i=1}^{N} \frac{1\{a_i=a,x_i=x\}}{N}$ then $\hat{\theta}$ is Maximum Likelihood estimator

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Further results (sketch)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで
Introduction	Framework	Duality	Identification	Estimation	Conclusion
Independend	ce of Irrelevant				

Classic IIA for static discrete choice:

Relative frequency of choosing two alternatives is independent of the choice set

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Luce (1959). IIA \Leftrightarrow static choice rationalized by the logit model

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Independenc	e of Irrelevant	Alternatives			

Classic IIA for static discrete choice:

Relative frequency of choosing two alternatives is independent of the choice set

Luce (1959). IIA \Leftrightarrow static choice rationalized by the logit model

For given F, formulate dynamic analogue of IIA:

Relative distance of any pair of state-action frequencies from the observed one independent of which other state-action frequencies are available where distance is Bregman divergence associated with F

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Independenc	e of Irrelevant	Alternatives			

Classic IIA for static discrete choice:

Relative frequency of choosing two alternatives is independent of the choice set

Luce (1959). IIA \Leftrightarrow static choice rationalized by the logit model

For given F, formulate dynamic analogue of IIA:

Relative distance of any pair of state-action frequencies from the observed one independent of which other state-action frequencies are available where distance is Bregman divergence associated with F

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem. Dynamic IIA \Leftrightarrow dynamic choice rationalized by undiscounted MDP with i.i.d. shocks $\sim F$

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Extensions					

The analyst observes a linear function of state-action frequencies

e.g. Mixed models. Heterogeneous agents. $u \sim G$. Analyst observes $\bar{\mu} = \int \mu(u) dG$ Results apply to the estimation of $\bar{u} = \int u dG$ (for known G)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introduction	Framework	Duality	Identification	Estimation	Conclusion
Conclusion					

Some results on estimation of undiscounted MDPs

Convenient mapping to static discrete choice

Would be interesting to explore

Estimation exploring cyclic monotonicity (Shi, Shum & Song 2018)

Estimating random coefficient dynamic models from "market level" variation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Beyond Conditional Independence (correlated unobservables)